A347022
Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(1/5).
Original entry on oeis.org
1, 1, 5, 50, 720, 13650, 320370, 8967720, 291538080, 10795026840, 448484788680, 20658543923280, 1044915105622800, 57572197848878400, 3432143603792520000, 220109018869587398400, 15110184224165199667200, 1105545474191480800492800, 85881534014930659599571200
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - 5 Log[1 + x])^(1/5), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 5^k Pochhammer[1/5, k], {k, 0, n}], {n, 0, 18}]
A365588
Expansion of e.g.f. 1 / (1 + 5 * log(1-x)).
Original entry on oeis.org
1, 5, 55, 910, 20080, 553870, 18333050, 707959800, 31244562600, 1551289408800, 85579293493200, 5193226343508000, 343790892166398000, 24655487205067386000, 1904221630155352038000, 157574022827034258192000, 13908505761692419540320000
Offset: 0
-
a[n_] := Sum[5^k * k! * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, 5^k*k!*abs(stirling(n, k, 1)));
A365587
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).
Original entry on oeis.org
1, 4, 40, 620, 13020, 345120, 11049960, 414711720, 17851113720, 866838536640, 46873882199520, 2793214943693280, 181854240448514400, 12842833148474299200, 977822088984613771200, 79842750450344086867200, 6959878576257689846265600
Offset: 0
-
a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*abs(stirling(n, k, 1)));
A365585
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(2/5).
Original entry on oeis.org
1, 2, 16, 214, 4030, 98020, 2923580, 103306320, 4219788720, 195631761360, 10148327972160, 582405469831920, 36635844203963760, 2506613821744700640, 185327181909308762400, 14724431257109269113600, 1251088847268683450630400, 113202071235423519573369600
Offset: 0
-
a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 10 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*abs(stirling(n, k, 1)));
A365586
Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(3/5).
Original entry on oeis.org
1, 3, 27, 390, 7770, 197520, 6108720, 222585360, 9337369920, 443180705520, 23478556469040, 1373311758143520, 87902002849402080, 6111187336982764800, 458573390187299798400, 36939974397639066086400, 3179423992959428231894400, 291190738388834303603395200
Offset: 0
-
a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 13 2023 *)
-
a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*abs(stirling(n, k, 1)));
A347019
E.g.f.: 1 / (1 + 6 * log(1 - x))^(1/6).
Original entry on oeis.org
1, 1, 8, 114, 2358, 64074, 2157828, 86714592, 4049302404, 215458069428, 12867377875632, 852254389954296, 61998666080311800, 4914000741835488744, 421488717980664846960, 38897664480760253351904, 3843081247426270376211216, 404727487161912602921083536
Offset: 0
-
nmax = 17; CoefficientList[Series[1/(1 + 6 Log[1 - x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 17}]
Showing 1-6 of 6 results.
Comments