A022013
Initial members of prime octuplets (p, p+6, p+8, p+14, p+18, p+20, p+24, p+26).
Original entry on oeis.org
88793, 284723, 855713, 1146773, 6560993, 69156533, 74266253, 218033723, 261672773, 302542763, 964669613, 1340301863, 1400533223, 1422475913, 1837160183, 1962038783, 2117861723, 2249363093, 2272018733, 2558211563
Offset: 1
- Dana Jacobsen, Table of n, a(n) for n = 1..10000 (first 1000 terms from Matt C. Anderson)
- T. Forbes and Norman Luhn, Prime k-tuplets
- Stephan Ramon Garcia, Jeffrey Lagarias, and Ethan Simpson Lee, The error term in the truncated Perron formula for the logarithm of an L-function, arXiv:2206.01391 [math.NT], 2022.
- Norman Luhn and Hugo Pfoertner, 10 million terms of A022013, 7z compressed (47.9 MB) (2021).
-
[p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [6,8,14,18,20,24,26] | IsPrime(p+r)}]; // Vincenzo Librandi, Sep 30 2015
-
Select[Prime[Range[200000]], Union[PrimeQ[# + {6, 8, 14, 18, 20, 24, 26}]] == {True} &] (* Vincenzo Librandi, Sep 30 2015 *)
Select[Prime[Range[125*10^6]],AllTrue[#+{6,8,14,18,20,24,26},PrimeQ]&] (* Harvey P. Dale, Jul 21 2025 *)
-
forprime(p=2, 1e30, if (isprime(p+6) && isprime(p+8) && isprime(p+14) && isprime(p+18) && isprime(p+20) && isprime(p+24) && isprime(p+26) , print1(p", "))) \\ Altug Alkan, Sep 30 2015
-
use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 6,8,14,18,20,24,26); # Dana Jacobsen, Sep 30 2015
A210439
The minimal Skewes number for prime n-tuplets.
Original entry on oeis.org
1369391, 337867, 1172531, 21432401, 251331775687, 7572964186421, 1203255673037261
Offset: 2
Initially, for twin primes we have pi_2(p) < C_2 Li_2(p). The inequality is reversed for the first time for the 10744th pair of twin primes (1369391,1369393), therefore a(2) = 1369391.
Similarly, for prime triples (p,p+4,p+6), pi_3(p) < C_3 Li_3(p) until the 652nd triple (337867,337871,337873) where the inequality is reversed for the first time. Thus a(3)=337867. (The reversal for the other type of triples (p,p+2,p+6) occurs much later, so triples (p,p+2,p+6) do not contribute a term to this sequence.)
From _Hugo Pfoertner_, Aug 26 2021, Oct 24 2021: (Start)
a(8) corresponds to the 134292-th 8-tuple of the form p + [0, 2, 6, 8, 12, 18, 20, 26], found using a program provided by _Norman Luhn_. This type of 8-tuple is the one that leads to the earliest crossing of the corresponding comparison value (see linked illustration), while the other two possible configurations (enumerated in A022012 and A022013 or in A346997 and A346998) are still far from crossing their respective applicable comparison values. The other two possible 8-tuples, which lead to the crossing that occurs later, determine the terms A332493(8) and A348053(8), dependent on the criterion applied to decide what is "later". (End)
- Tony Forbes and Norman Luhn, Patterns of prime k-tuplets & the Hardy-Littlewood constants.
- Tony Forbes and Norman Luhn, Prime k-tuplets.
- Alexei Kourbatov, PARI code for computing a(6)
- Norman Luhn, Database of the smallest prime k-tuplets, compressed files.
- Hugo Pfoertner, Illustration of 8-tuplet counts determining a(8).
- László Tóth, On The Asymptotic Density Of Prime k-tuples and a Conjecture of Hardy and Littlewood, arXiv:1910.02636 [math.NT], 2019.
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture
- Eric Weisstein's World of Mathematics, Prime Constellation
- Marek Wolf, The Skewes number for twin primes: counting sign changes of Pi_2(x)-C_2 Li_2(x), arXiv:1107.2809 [math.NT], 2011.
Cf.
A052435 (round(li(n)-pi(n)), where li is the logarithmic integral and pi(x) is the prime counting function).
Original entry on oeis.org
11, 1071322781, 45549998561, 1388974666811, 36073412603141, 820230015839231, 16469758685735471, 308147713085128991
Offset: 0
Original entry on oeis.org
17, 134764997, 9844128377, 345828727877, 9637575539147, 223528482767957, 4652382265065167, 89306626080020957
Offset: 0
A347852
Record gaps between prime octuplets of the form p + {0, 6, 8, 14, 18, 20, 24, 26} (initial members are A022013), divided by 210.
Original entry on oeis.org
933, 2719, 25782, 298074, 684607, 3152985, 3615775, 4062023, 9213717, 17131290, 18003995, 19350016, 23725387, 30570595, 34125949, 39157518, 61083539, 67660632, 83438975, 94515652, 117202015, 119103567, 126310893, 127678285, 144003855, 189879059, 197614054, 240073574
Offset: 1
a(1) = (A022013(2) - A022013(1))/210 = (284723 - 88793)/210 = 933; 88793 = A347853(1).
a(6) = (A022013(11) - A022013(10))/210 = (964669613 - 302542763)/210 = 3152985, exceeding all previous differences; 302542763 = A347853(6).
The primes at the lower end of the record gaps are given in
A347853.
Showing 1-5 of 5 results.
Comments