cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A352870 Ratios of consecutive terms of A347064, or 0 if ratio is not an integer.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 71, 73, 78, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 0, 191, 193, 197, 199, 211, 216, 223, 227, 229
Offset: 1

Views

Author

J. Lowell, Apr 06 2022

Keywords

Comments

a(51)=0; quotient is the non-integer 2185/12.

Examples

			A347064(18) is 42 times A347064(17) so a(18) = 42.
		

Crossrefs

Cf. A347064.

Formula

a(n) = A347064(n)/A347064(n-1) if integer, otherwise 0.

A037992 Smallest number with 2^n divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 17297280, 294053760, 5587021440, 128501493120, 3212537328000, 93163582512000, 2888071057872000, 106858629141264000, 4381203794791824000, 188391763176048432000, 8854412869274276304000, 433866230594439538896000
Offset: 0

Views

Author

Keywords

Comments

Positions where the number of infinitary divisors of n (A037445), increases to a record (cf. A002182), or infinitary analog of highly composite numbers (A002182). - Vladimir Shevelev, May 13-22 2016
Infinitary superabundant numbers: numbers m with record values of the infinitary abundancy index, A049417(m)/m > A049417(k)/k for all k < m. - Amiram Eldar, Sep 20 2019

Crossrefs

Programs

  • Haskell
    a037992 n = head [x | x <- [1..], a000005 x == 2 ^ n]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Catch[ For[ k = 2, True, k++, If[ an = k*a[n-1]; DivisorSigma[0, an] == 2^n, Throw[an]]]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 16 2012 *)
  • PARI
    {a(n)= local(A,m,c,k,p); if(n<1, n==0, c=0; A=1; m=1; while( cMichael Somos, Apr 15 2005 */
    
  • Python
    def a(n):
      product = 1
      k = 1
      for i in range(n+1):
        product *= k   # k=A050376(i), for i>=1
        while product % k == 0:
          k += 1
      return product
    # Jason L. Miller, Mar 20 2024

Formula

A000005(a(n)) = A000079(n).
a(n) = Product_{k=1..n} A050376(k), product of the first n terms of A050376. - Lekraj Beedassy, Jun 30 2004
a(n) = A052330(2^n -1). - Thomas Ordowski, Jun 29 2005
A001221(a(n+1)) <= A001221(a(n))+1, see also A074239; A007947(a(n)) gives a sequence of primorials (A002110) in nondecreasing order. - Reinhard Zumkeller, Apr 16 2006, corrected: Apr 09 2015
a(n) = A005179(2^n). - Ivan N. Ianakiev, Apr 01 2015
a(n+1)/a(n) = A050376(n+1). - Jinyuan Wang, Oct 14 2018

Extensions

a(18) from Don Reble, Aug 20 2002
Showing 1-2 of 2 results.