cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A052868 Expansion of e.g.f. LambertW(x/(-1+x))/x*(-1+x).

Original entry on oeis.org

1, 1, 5, 40, 449, 6556, 118507, 2561518, 64540625, 1859206600, 60309007091, 2176222795594, 86488677518905, 3754431762036892, 176771908657345835, 8973513955735900246, 488586200931213192353, 28404347922603101834512
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Sequence(Z,1 <= card),S=Set(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[LambertW[x/(-1+x)]/x*(-1+x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
    nmax = 20; A[] = 0; Do[A[x] = Product[Exp[x^k*A[x]], {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 01 2024 *)
  • Maxima
    makelist(if n=0 then 1 else sum(n!/k!*binomial(n-1, k-1)*(k+1)^(k-1),k,0,n),n,0,17);  /* Bruno Berselli, May 25 2011 */
    
  • PARI
    x='x+O('x^50); Vec(serlaplace(lambertw(x/(-1+x))/x*(-1+x))) \\ G. C. Greubel, Nov 12 2017
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x))))) \\ Seiichi Manyama, Mar 01 2023

Formula

E.g.f.: LambertW(x/(-1+x))/x*(-1+x).
a(n) = Sum_{k=0..n} n!/k!*binomial(n-1, k-1)*(k+1)^(k-1). - Vladeta Jovovic, Sep 17 2003
a(n) ~ sqrt((exp(1)+1)*exp(1))*n^(n-1)*(1+exp(-1))^n. - Vaclav Kotesovec, Sep 29 2013
E.g.f. A(x) satisfies A(x) = exp( x*A(x)/(1-x) ) - Olivier Gérard, Dec 28 2013
E.g.f.: exp( -LambertW(-x/(1-x)) ). - Seiichi Manyama, Mar 01 2023

Extensions

New name using e.g.f., Joerg Arndt, Sep 30 2013

A108919 Number of series-reduced labeled trees with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 13, 51, 601, 4803, 63673, 775351, 12186061, 196158183, 3661759333, 72413918019, 1583407093633, 36916485570331, 929770285841137, 24904721121298671, 711342228666833173, 21502519995056598639, 687345492498807434461, 23135454269839313430715, 818568166383797223246601, 30357965273255025673685091
Offset: 1

Views

Author

Vladeta Jovovic, Jul 20 2005

Keywords

Comments

"Series-reduced" means that if the tree is rooted at 1, then there is no node with just a single child.
Callan points out that A002792 is an incorrect version of this sequence. - Joerg Arndt, Jul 01 2014

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[(-1)^(n-k)*n!/k!*Binomial[n-1, k-1]*k^(k-1), {k, n}]/n; Table[ f[n], {n, 20}] (* Robert G. Wilson v, Jul 21 2005 *)
  • PARI
    a(n) = { 1/n * sum(k=1, n, (-1)^(n-k) * binomial(n,k) * (n-1)!/(k-1)! * k^(k-1) ); } \\ Joerg Arndt, Aug 28 2014

Formula

a(n) = A060356(n)/n.
1 = Sum_{n>=0} a(n+1)*(exp(x)-x)^(-n-1)*x^n/n!.
E.g.f.: A(x) = Sum_{n>=0} a(n+1)*x^n/n! satisfies A(x) = exp(x*A(x))/(1+x). - Olivier Gérard, Dec 31 2013 (edited by Gus Wiseman, Dec 31 2019)
E.g.f.: -Integral (LambertW(-x/(1 + x))/x) dx. - Ilya Gutkovskiy, Jul 01 2020

Extensions

More terms from Robert G. Wilson v, Jul 21 2005
New name (from A002792) by Joerg Arndt, Aug 28 2014
Offset corrected by Gus Wiseman, Dec 31 2019

A352448 Expansion of e.g.f. LambertW( -2*x/(1-x) ) / (-2*x).

Original entry on oeis.org

1, 3, 22, 278, 5128, 125592, 3850000, 142013328, 6129705088, 303238991744, 16920975718144, 1051612647426816, 72045481821580288, 5394849460316820480, 438392509692455286784, 38424395486908104071168, 3613476161122656804438016
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2022

Keywords

Comments

An interesting property of this e.g.f. A(x) is that the sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1.

Examples

			E.g.f.: A(x) = 1 + 3*x + 22*x^2/2! + 278*x^3/3! + 5128*x^4/4! + 125592*x^5/5! + 3850000*x^6/6! + 142013328*x^7/7! + ...
such that A(x) = exp( 2*x*A(x) ) / (1-x), where
exp( 2*x*A(x) ) = 1 + 2*x + 16*x^2/2! + 212*x^3/3! + 4016*x^4/4! + 99952*x^5/5! + 3096448*x^6/6! + 115063328*x^7/7! + ...
Related table.
Another interesting property of the e.g.f. A(x) is illustrated here.
The table of coefficients of x^k/k! in 1/A(x)^n begins:
n=1: [1,  -3,  -4,   -44,  -736,  -16832, -491168, ...];
n=2: [1,  -6,  10,   -16,  -320,   -8064, -249344, ...];
n=3: [1,  -9,  42,   -78,   -48,   -1776,  -66528, ...];
n=4: [1, -12,  92,  -392,   728,    -128,   -8960, ...];
n=5: [1, -15, 160, -1120,  4600,   -8520,    -320, ...];
n=6: [1, -18, 246, -2424, 16104,  -64752,  119952, ...];
...
from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1, as follows:
n=1:-2 = 1 +  -3;
n=2: 0 = 1 +  -6 +  10/2!;
n=3: 0 = 1 +  -9 +  42/2! +   -78/3!;
n=4: 0 = 1 + -12 +  92/2! +  -392/3! +   728/4!;
n=5: 0 = 1 + -15 + 160/2! + -1120/3! +  4600/4! +   -8520/5!;
n=6: 0 = 1 + -18 + 246/2! + -2424/3! + 16104/4! +  -64752/5! +  119952/6!;
...
		

Crossrefs

Programs

  • Mathematica
    terms = 17; A[] = 0; Do[A[x] = Exp[2x*A[x]]/(1-x) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Mar 24 2025 *)
  • PARI
    {a(n) = n!*polcoeff( (1/x)*serreverse( x/(exp(2*x  +x^2*O(x^n)) + x) ),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(lambertw(-2*x/(1-x))/(-2*x))) \\ Michel Marcus, Mar 17 2022
    
  • PARI
    a(n) = n!*sum(k=0, n, 2^k*(k+1)^(k-1)*binomial(n, k)/k!); \\ Seiichi Manyama, Mar 03 2023

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = LambertW( -2*x/(1-x) ) / (-2*x).
(2) A(x) = exp( 2*x*A(x) ) / (1-x).
(3) A(x) = log( (1-x) * A(x) ) / (2*x).
(4) A( x/(exp(2*x) + x) ) = exp(2*x) + x.
(5) A(x) = (1/x) * Series_Reversion( x/(exp(2*x) + x) ).
(6) Sum_{k=0..n} [x^k] 1/A(x)^n = 0, for n > 1.
(7) [x^(n+1)/(n+1)!] 1/A(x)^n = -2^(n+1) * n for n >= (-1).
a(n) ~ (1 + 2*exp(1))^(n + 3/2) * n^(n-1) / (2^(3/2) * exp(n + 1/2)). - Vaclav Kotesovec, Mar 18 2022
a(n) = n! * Sum_{k=0..n} 2^k * (k+1)^(k-1) * binomial(n,k)/k!. - Seiichi Manyama, Mar 03 2023

A377826 E.g.f. satisfies A(x) = (1 + x) * exp(x * A(x)).

Original entry on oeis.org

1, 2, 7, 49, 489, 6521, 108643, 2178107, 51084337, 1373054833, 41624314371, 1405311853595, 52299954524953, 2127347522554073, 93902399411048803, 4470613587492385051, 228362858274694209249, 12458393118650371672673, 722983769486947261178371
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(k+1, n-k)/k!);

Formula

E.g.f.: (1+x) * exp( -LambertW(-x*(1+x)) ).
E.g.f.: -LambertW(-x*(1+x))/x.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(k+1,n-k)/k!.
a(n) ~ sqrt(-2*sqrt(1 + 4*exp(-1)) + 2 + 8*exp(-1)) * 2^n * n^(n-1) / ((-1 + sqrt(1 + 4*exp(-1)))^(n+1) * exp(n - 1/2)). - Vaclav Kotesovec, Nov 09 2024

A361182 E.g.f. satisfies A(x) = exp( 3*x*A(x) ) / (1-x).

Original entry on oeis.org

1, 4, 41, 735, 19293, 672573, 29342241, 1540097541, 94579646553, 6656561754345, 528414534842949, 46716837535074897, 4552821617337191637, 484953672676323320109, 56056228305888242732841, 6988787950179969557086797, 934866118278080385555647025
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[3*x*A[x]]/(1 - x) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n, 3^k*(k+1)^(k-1)*binomial(n, k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(lambertw(-3*x/(1-x))/(-3*x)))

Formula

a(n) = n! * Sum_{k=0..n} 3^k * (k+1)^(k-1) * binomial(n,k)/k!.
E.g.f.: LambertW( -3*x/(1-x) ) / (-3*x).
a(n) ~ (1 + 3*exp(1))^(n + 3/2) * n^(n-1) / (3^(3/2) * exp(n + 1/2)). - Vaclav Kotesovec, Mar 03 2023

A377811 E.g.f. satisfies A(x) = exp(x * A(x)) / (1 - x)^3.

Original entry on oeis.org

1, 4, 27, 283, 4217, 82971, 2041855, 60475885, 2096566449, 83324680435, 3736041351311, 186594364199277, 10274269171279657, 618386703880855339, 40393224245061185919, 2846030947359659421901, 215160957844217080056161, 17373449685399138641312739, 1492298627191467511376377999
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^3))/(1-x)^3))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+2*k+2, n-k)/k!);

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^3) )/(1-x)^3.
E.g.f.: -LambertW(-x/(1-x)^3)/x.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+2*k+2,n-k)/k!.

A360601 E.g.f. satisfies A(x) = exp(x*A(x)^2) / (1-x).

Original entry on oeis.org

1, 2, 13, 166, 3265, 87306, 2957509, 121400350, 5857287937, 324884241874, 20370279663901, 1424790170536470, 109990236302275201, 9289460282062082266, 852049115732672006101, 84345608594930495005966, 8962937531710834906989313, 1017655033307013508626619554
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(lambertw(-2*x/(1-x)^2)/(-2*x))))

Formula

E.g.f.: sqrt(LambertW( -2*x/(1-x)^2 ) / (-2*x)).
a(n) ~ sqrt(1 + 2*exp(-1) - sqrt(1 + 2*exp(-1))) * n^(n-1) / (2 * (sqrt(1 + 2*exp(-1)) - 1)^(3/2) * exp(2*n + 1/2) * (1 + exp(-1) - sqrt(1 + 2*exp(-1)))^n). - Vaclav Kotesovec, Mar 06 2023
a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n+k,n-k)/k!. - Seiichi Manyama, Mar 09 2024

A360609 E.g.f. satisfies A(x) = exp(x*A(x)^3) / (1-x).

Original entry on oeis.org

1, 2, 17, 313, 9053, 357941, 17975605, 1095604133, 78570635225, 6482415935449, 604889610870881, 62989604872166897, 7241672622495518773, 911048848278644776949, 124497704904842673086285, 18364053909500922198147421, 2908158473059042016441887025
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(-3*x/(1-x)^3)/(-3*x))^(1/3)))

Formula

E.g.f.: (LambertW( -3*x/(1-x)^3 ) / (-3*x))^(1/3).
a(n) ~ 3^(-5/6) * (2^(4/3) + 2*(3 + sqrt(4*exp(1) + 9))^(1/3) * exp(-2/3) - 2^(2/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3))^(1/6) * 2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(4/9) * sqrt(4 - 2^(4/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) + 3*2^(2/3) * exp(-2/3) * (3 + sqrt(4*exp(1) + 9))^(1/3)) * n^(n-1) * (12 + 4*sqrt(4*exp(1) + 9))^(n/3) / (exp(7/18 + 5*n/3) * (2 - 2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) + exp(-2/3) * (12 + 4*sqrt(4*exp(1) + 9))^(1/3))^n * ((3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) - 2^(2/3))^(3/2) * sqrt(2^(1/3) * (3 + sqrt(4*exp(1) + 9))^(2/3) * exp(-1/3) - 2)). - Vaclav Kotesovec, Mar 06 2023
a(n) = n! * Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n+2*k,n-k)/k!. - Seiichi Manyama, Mar 09 2024

A377810 E.g.f. satisfies A(x) = exp(x * A(x)) / (1 - x)^2.

Original entry on oeis.org

1, 3, 17, 154, 1993, 34066, 728209, 18733926, 564117425, 19473863986, 758421401401, 32901791851006, 1573602042306265, 82267318018246986, 4667656830688700801, 285662368622361581206, 18758565855176593500385, 1315663025587514658845026, 98160436697525045768511721
Offset: 0

Views

Author

Seiichi Manyama, Nov 08 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^2))/(1-x)^2))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+k+1, n-k)/k!);

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^2) )/(1-x)^2.
E.g.f.: -LambertW(-x/(1-x)^2)/x.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+k+1,n-k)/k!.
a(n) ~ 2^(n + 3/2) * sqrt(1 + 4*exp(-1) - sqrt(1 + 4*exp(-1))) * n^(n-1) / ((-1 + sqrt(1 + 4*exp(-1)))^(3/2) * (1 + 2*exp(-1) - sqrt(1 + 4*exp(-1)))^(n + 1/2) * exp(2*n+1)). - Vaclav Kotesovec, Nov 11 2024

A352411 E.g.f.: x / LambertW( x/(1-x) ).

Original entry on oeis.org

1, 0, -1, 1, -7, 31, -281, 2381, -28015, 346879, -5149009, 82769149, -1499707991, 29444151023, -632715633577, 14631547277101, -364321853163871, 9686058045625471, -274387229080161569, 8241211775883617405, -261766195805536280839, 8763341168691985628719
Offset: 0

Views

Author

Paul D. Hanna, Mar 15 2022

Keywords

Comments

An interesting property of this e.g.f. A(x) is that the sum of coefficients of x^k, k=0..n, in A(x)^n equals zero, for n > 1.

Examples

			E.g.f.: A(x) = 1 + 0*x - x^2/2! + x^3/3! - 7*x^4/4! + 31*x^5/5! - 281*x^6/6! + 2381*x^7/7! - 28015*x^8/8! + ...
such that A(x) = (1-x) * exp(x/A(x)), where
exp(x/A(x)) = 1 + x + x^2/2! + 4*x^3/3! + 9*x^4/4! + 76*x^5/5! + 175*x^6/6! + 3606*x^7/7! + 833*x^8/8! + ...
Related series.
The e.g.f. A(x) satisfies A( x/(exp(-x) + x) ) = 1/(exp(-x) + x), where
1/(exp(-x) + x) = 1 - x^2/2! + x^3/3! + 5*x^4/4! - 19*x^5/5! - 41*x^6/6! + 519*x^7/7! - 183*x^8/8! + ...
Related table.
Another defining property of the e.g.f. A(x) is illustrated here.
The table of coefficients of x^k/k! in A(x)^n begins:
n=1: [1, 0, -1, 1,  -7,   31, -281, 2381, -28015, ...];
n=2: [1, 0, -2, 2,  -8,   42, -332, 2970, -33392, ...];
n=3: [1, 0, -3, 3,  -3,   33, -243, 2397, -26631, ...];
n=4: [1, 0, -4, 4,   8,    4, -104, 1292, -15712, ...];
n=5: [1, 0, -5, 5,  25,  -45,   -5,  285,  -6095, ...];
n=6: [1, 0, -6, 6,  48, -114,  -36,    6,   -720, ...];
n=7: [1, 0, -7, 7,  77, -203, -287, 1085,     -7, ...];
n=8: [1, 0, -8, 8, 112, -312, -848, 4152,  -1856, 8, ...];
...
from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in A(x)^n equals zero, for n > 1, as follows:
n=1: 1 = 1 + 0;
n=2: 0 = 1 + 0 + -2/2!;
n=3: 0 = 1 + 0 + -3/2! + 3/3!;
n=4: 0 = 1 + 0 + -4/2! + 4/3! +   8/4!;
n=5: 0 = 1 + 0 + -5/2! + 5/3! +  25/4! +  -45/5!;
n=6: 0 = 1 + 0 + -6/2! + 6/3! +  48/4! + -114/5! +  -36/6!;
n=7: 0 = 1 + 0 + -7/2! + 7/3! +  77/4! + -203/5! + -287/6! + 1085/7!;
n=8: 0 = 1 + 0 + -8/2! + 8/3! + 112/4! + -312/5! + -848/6! + 4152/7! + -1856/8!;
...
		

Crossrefs

Programs

  • PARI
    {a(n) = n!*polcoeff( x/serreverse( x/(exp(-x  +x^2*O(x^n)) + x) ),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(x/lambertw(x/(1-x)))) \\ Michel Marcus, Mar 17 2022

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = x / LambertW( x/(1-x) ).
(2) A(x) = (1-x) * exp( x/A(x) ).
(3) A(x) = x / log( A(x)/(1-x) ).
(4) A( x/(exp(-x) + x) ) = 1/(exp(-x) + x).
(5) A(x) = x / Series_Reversion( x/(exp(-x) + x) ).
(6) Sum_{k=0..n} [x^k] A(x)^n = 0, for n > 1.
(7) [x^(n+1)/(n+1)!] A(x)^n = (-1)^n * n for n >= (-1).
a(n) ~ (-1)^(n+1) * exp(-1) * (1 - exp(-1))^(n - 1/2) * n^(n-1). - Vaclav Kotesovec, Mar 15 2022
Showing 1-10 of 27 results. Next