cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A353565 Lexicographically earliest infinite sequence such that a(i) = a(j) => A353564(i) = A353564(j), where A353564(n) = Product_{d|n, dA276086(phi(d)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 5, 6, 2, 7, 2, 8, 9, 7, 2, 10, 2, 11, 12, 10, 2, 13, 14, 15, 12, 16, 2, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 2, 26, 2, 22, 27, 28, 2, 29, 30, 31, 32, 33, 2, 34, 35, 36, 37, 26, 2, 38, 2, 39, 40, 41, 42, 43, 2, 44, 45, 46, 2, 47, 2, 48, 49, 50, 42, 51, 2, 52, 40, 53, 2, 54, 27, 55, 56, 47, 2, 57
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Comments

Restricted growth sequence transform of A353564.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j) => A051953(i) = A051953(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353564(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A276086(eulerphi(d)))); m; };
    v353565 = rgs_transform(vector(up_to,n,A353564(n)));
    A353565(n) = v353565[n];

A051953 Cototient(n) := n - phi(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, 1, 38, 35, 40, 17, 54, 1, 48, 27
Offset: 1

Views

Author

Labos Elemer, Dec 21 1999

Keywords

Comments

Unlike totients, cototient(n+1) = cototient(n) never holds -- except 2-phi(2) = 3 - phi(3) = 1 -- because cototient(n) is congruent to n modulo 2. - Labos Elemer, Aug 08 2001
Theorem (L. Redei): b^a(n) == b^n (mod n) for every integer b. - Thomas Ordowski and Robert Israel, Mar 11 2016
Let S be the sum of the cototients of the divisors of n (A001065). S < n iff n is deficient, S = n iff n is perfect, and S > n iff n is abundant. - Ivan N. Ianakiev, Oct 06 2023

Examples

			n = 12, phi(12) = 4 = |{1, 5, 7, 11}|, a(12) = 12 - phi(12) = 8, numbers not exceeding 12 and not coprime to 12: {2, 3, 4, 6, 8, 9, 10, 12}.
		

Crossrefs

Cf. A000010, A001065 (inverse Möbius transform), A005278, A001274, A083254, A098006, A049586, A051612, A053579, A054525, A062790 (Möbius transform), A063985 (partial sums), A063986, A290087.
Records: A065385, A065386.
Number of zeros in the n-th row of triangle A054521. - Omar E. Pol, May 13 2016
Cf. A063740 (number of k such that cototient(k) = n). - M. F. Hasler, Jan 11 2018

Programs

  • Haskell
    a051953 n = n - a000010 n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    with(numtheory); A051953 := n->n-phi(n);
  • Mathematica
    Table[n - EulerPhi[n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    A051953(n) = n - eulerphi(n); \\ Michael B. Porter, Jan 28 2010
    
  • Python
    from sympy.ntheory import totient
    print([i - totient(i) for i in range(1, 101)]) # Indranil Ghosh, Mar 17 2017

Formula

a(n) = n - A000010(n).
Equals Mobius transform (A054525) of A001065. - Gary W. Adamson, Jul 11 2008
a(A006881(n)) = sopf(A006881(n)) - 1; a(A000040(n)) = 1. - Wesley Ivan Hurt, May 18 2013
G.f.: sum(n>=1, A000010(n)*x^(2*n)/(1-x^n) ). - Mircea Merca, Feb 23 2014
From Ilya Gutkovskiy, Apr 13 2017: (Start)
G.f.: -Sum_{k>=2} mu(k)*x^k/(1 - x^k)^2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/zeta(s)). (End)
From Antti Karttunen, Sep 05 2018 & Apr 29 2022: (Start)
Dirichlet convolution square of A317846/A046644 gives this sequence + A063524.
a(n) = A003557(n) * A318305(n).
a(n) = A000010(n) - A083254(n).
a(n) = A318325(n) - A318326(n).
a(n) = Sum_{d|n} A062790(d) = Sum_{d|n, dA007431(d)*(A000005(n/d)-1).
a(n) = A048675(A318834(n)) = A276085(A353564(n)). [These follow from the formula below]
a(n) = Sum_{d|n, dA000010(d).
a(n) = A051612(n) - A001065(n).
(End)

A276085 Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 30, 3, 4, 7, 210, 4, 2310, 31, 8, 4, 30030, 5, 510510, 8, 32, 211, 9699690, 5, 12, 2311, 6, 32, 223092870, 9, 6469693230, 5, 212, 30031, 36, 6, 200560490130, 510511, 2312, 9, 7420738134810, 33, 304250263527210, 212, 10, 9699691, 13082761331670030, 6, 60, 13, 30032, 2312, 614889782588491410, 7, 216, 33, 510512, 223092871, 32589158477190044730, 10
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Completely additive with a(p^e) = e * A002110(A000720(p)-1).
This is a left inverse of A276086 ("primorial base exp-function"), hence the name "primorial base log-function". When the domain is restricted to the terms of A048103, this works also as a right inverse, as A276086(a(A048103(n))) = A048103(n) for all n >= 1. - Antti Karttunen, Apr 24 2022
On average, every third term is a multiple of 4. See A369001. - Antti Karttunen, May 26 2024

Crossrefs

A left inverse of A276086.
Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27, 3125: A003159, A339746, A369002, A373140, A373138, A377872, A377878.
Cf. A036554 (positions of odd terms), A035263, A096268 (parity of terms).
Cf. A372575 (rgs-transform), A372576 [a(n) mod 360], A373842 [= A003415(a(n))].
Cf. A373145 [= gcd(A003415(n), a(n))], A373361 [= gcd(n, a(n))], A373362 [= gcd(A001414(n), a(n))], A373485 [= gcd(A083345(n), a(n))], A373835 [= gcd(bigomega(n), a(n))], and also A373367 and A373147 [= A003415(n) mod a(n)], A373148 [= a(n) mod A003415(n)].
Other completely additive sequences with primes p mapped to a function of p include: A001222 (with a(p)=1), A001414 (with a(p)=p), A059975 (with a(p)=p-1), A341885 (with a(p)=p*(p+1)/2), A373149 (with a(p)=prevprime(p)), A373158 (with a(p)=p#).
Cf. also A276075 for factorial base and A048675, A054841 for base-2 and base-10 analogs.

Programs

  • Mathematica
    nn = 60; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[FromDigits[#, b] &@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, nn}] (* Version 10.2, or *)
    f[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ w - 1]], Reverse@ w}]; Table[f@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, 60}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; \\ Antti Karttunen, Nov 11 2024
    
  • Python
    from sympy import primorial, primepi, factorint
    def a002110(n):
        return 1 if n<1 else primorial(n)
    def a(n):
        f=factorint(n)
        return sum(f[i]*a002110(primepi(i) - 1) for i in f)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017

Formula

a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A002110(A055396(n)-1)).
a(1) = 0, a(n) = (e1*A002110(i1-1) + ... + ez*A002110(iz-1)) when n = prime(i1)^e1 * ... * prime(iz)^ez.
Other identities.
For all n >= 0:
a(A276086(n)) = n.
a(A000040(1+n)) = A002110(n).
a(A002110(1+n)) = A143293(n).
From Antti Karttunen, Apr 24 & Apr 29 2022: (Start)
a(A283477(n)) = A283985(n).
a(A108951(n)) = A346105(n). [The latter has a similar additive formula as this sequence, but instead of primorials, uses their partial sums]
When applied to sequences where a certain subset of the divisors of n has been multiplicatively encoded with the help of A276086, this yields a corresponding number-theoretical sequence, i.e. completes their computation:
a(A319708(n)) = A001065(n) and a(A353564(n)) = A051953(n).
a(A329350(n)) = A069359(n) and a(A329380(n)) = A323599(n).
In the following group, the sum of the rhs-sequences is n [on each row, as say, A328841(n)+A328842(n)=n], because the pointwise product of the corresponding lhs-sequences is A276086:
a(A053669(n)) = A053589(n) and a(A324895(n)) = A276151(n).
a(A328571(n)) = A328841(n) and a(A328572(n)) = A328842(n).
a(A351231(n)) = A351233(n) and a(A327858(n)) = A351234(n).
a(A351251(n)) = A351253(n) and a(A324198(n)) = A351254(n).
The sum or difference of the rhs-sequences is A108951:
a(A344592(n)) = A346092(n) and a(A346091(n)) = A346093(n).
a(A346106(n)) = A346108(n) and a(A346107(n)) = A346109(n).
Here the two sequences are inverse permutations of each other:
a(A328624(n)) = A328625(n) and a(A328627(n)) = A328626(n).
a(A346102(n)) = A328622(n) and a(A346233(n)) = A328623(n).
a(A346101(n)) = A289234(n). [Self-inverse]
Other correspondences:
a(A324350(x,y)) = A324351(x,y).
a(A003961(A276086(n))) = A276154(n). [The primorial base left shift]
a(A276076(n)) = A351576(n). [Sequence reinterpreting factorial base representation as a primorial base representation]
(End)

Extensions

Name amended by Antti Karttunen, Apr 24 2022
Name simplified, the old name moved to the comments - Antti Karttunen, Jun 23 2024

A353563 Primorial base exp-function applied to Euler totient function: a(n) = A276086(phi(n)).

Original entry on oeis.org

2, 2, 3, 3, 9, 3, 5, 9, 5, 9, 45, 9, 25, 5, 15, 15, 225, 5, 125, 15, 25, 45, 1125, 15, 375, 25, 125, 25, 5625, 15, 7, 225, 375, 225, 625, 25, 35, 125, 625, 225, 315, 25, 175, 375, 625, 1125, 1575, 225, 175, 375, 21, 625, 7875, 125, 315, 625, 35, 5625, 39375, 225, 49, 7, 35, 21, 875, 375, 245, 21, 525, 625, 2205, 625
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353563(n) = A276086(eulerphi(n));

Formula

a(n) = A276086(A000010(n)).
Showing 1-4 of 4 results.