A073155
Leftmost column sequence of triangle A073153.
Original entry on oeis.org
1, 1, 4, 14, 56, 237, 1046, 4762, 22198, 105430, 508384, 2482297, 12248416, 60980875, 305955356, 1545397464, 7852100294, 40105277640, 205798130604, 1060467961508, 5485199090812, 28469067353686, 148220323891460
Offset: 0
a(3)=a(0)*[a(2)+a(1)]+[a(1)+a(0)]*[a(1)+a(0)]+[a(2)+a(1)]*a(0) =1*[4+1] + [1+1]*[1+1] + [4+1]*1 = 5 + 2*2 + 5 = 14.
A360082
a(n) = Sum_{k=0..n} binomial(4*k,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 6, 27, 134, 709, 3892, 22004, 127250, 749230, 4476386, 27071344, 165398868, 1019405720, 6330482488, 39571612357, 248796862550, 1572300095758, 9981970108384, 63633339713190, 407162295120570, 2614059813642256, 16834457481559076
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*(1+x)^4)))
A360083
a(n) = Sum_{k=0..n} binomial(5*k,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 7, 35, 189, 1092, 6538, 40278, 253730, 1626858, 10582616, 69669273, 463319257, 3107941405, 21004392887, 142882885210, 977562617826, 6722361860888, 46438235933700, 322111000796428, 2242538435656450, 15665017062799230, 109761527468995102
Offset: 0
-
Table[Sum[Binomial[5k,n-k]CatalanNumber[k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 13 2025 *)
-
a(n) = sum(k=0, n, binomial(5*k, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*(1+x)^5)))
A376145
E.g.f. satisfies A(x) = exp( x * (1+x)^3 * A(x) ).
Original entry on oeis.org
1, 1, 9, 88, 1265, 23916, 558427, 15608986, 508516017, 18936594712, 793902926771, 37017671474334, 1900666877186761, 106576903636156084, 6481047448001720427, 424870924596413523106, 29871349825140536394593, 2242231079099137007066544
Offset: 0
A382892
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^3 * A(x) )^3.
Original entry on oeis.org
1, 3, 24, 190, 1659, 15309, 146986, 1453536, 14704917, 151479031, 1583533308, 16756882194, 179149227231, 1932144798513, 20996553430206, 229678298803028, 2527034248221849, 27947027713469307, 310494250880357488, 3463870813896354726, 38787008808135775299
Offset: 0
-
a(n, r=3, s=3, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
A382894
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^3 * A(x) )^2.
Original entry on oeis.org
1, 2, 13, 78, 520, 3664, 26859, 202808, 1566693, 12323982, 98381841, 795023284, 6490951398, 53462144788, 443683640945, 3706539244272, 31144893093298, 263052053436600, 2231992880546400, 19016760502183968, 162629329186013523, 1395500273826639540
Offset: 0
-
a(n, r=2, s=3, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
A367285
G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^2)^3.
Original entry on oeis.org
1, 1, 5, 26, 159, 1042, 7185, 51340, 376806, 2823734, 21516113, 166196703, 1298413089, 10241803340, 81454834164, 652465062453, 5259084437170, 42624217133130, 347160390473763, 2839928983316595, 23323730673818467, 192237734035157372, 1589602164422747636
Offset: 0
-
a(n, s=3, t=2, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
Showing 1-7 of 7 results.