A073153
Triangle of numbers relating two sequences A073155 and A073156.
Original entry on oeis.org
1, 1, 2, 4, 5, 9, 14, 18, 22, 36, 56, 70, 86, 100, 156, 237, 293, 349, 405, 461, 698, 1046, 1283, 1507, 1703, 1927, 2164, 3210, 4762, 5808, 6756, 7540, 8324, 9272, 10318, 15080, 22198, 26960, 31144, 34462, 37598, 40916, 45100, 49862, 72060, 105430, 127628
Offset: 0
T(4,0) = T(3,3) + 2*T(2,2) + T(1,1) = 2 + 2*9 + 36 = 56.
T(5,2) = A073155(0)*A073155(5) + A073155(1)*A073155(4) + A073155(2)*A073155(3) = 1*237 + 1*56 + 4*14 = 349.
Triangle begins:
1;
1, 2;
4, 5, 9;
14, 18, 22, 36;
56, 70, 86, 100, 156;
237, 293, 349, 405, 461, 698;
1046, 1283, 1507, 1703, 1927, 2164, 3210; ...
A073154
Triangle of numbers relating two sequences (A073157 and A073155).
Original entry on oeis.org
1, 2, 4, 5, 9, 14, 18, 28, 38, 56, 70, 106, 131, 167, 237, 293, 433, 523, 613, 753, 1046, 1283, 1869, 2219, 2543, 2893, 3479, 4762, 5808, 8374, 9839, 11099, 12359, 13824, 16390, 22198
Offset: 0
a(4,0)=a(3,3)+a(2,2)=56+14=70.
a(5,2)=A073157(0)*A073157(5)+A073157(1)*A073157(4)+A073157(2)*A073157(3)= 1*293+2*70+5*18=523.
Rows:
{1};
{2,4};
{5,9,14};
{18,28,38,56};
{70,106,131,167,237};
{293,433,523,613,753,1046};
{1283,1869,2219,2543,2893,3479,4762};
...
A073157
Number of Schroeder n-paths containing no FFs.
Original entry on oeis.org
1, 2, 5, 18, 70, 293, 1283, 5808, 26960, 127628, 613814, 2990681, 14730713, 73229291, 366936231, 1851352820, 9397497758, 47957377934, 245903408244, 1266266092112, 6545667052320, 33954266444498, 176689391245146
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 18*x^3 + 70*x^4 + 293*x^5 + 1283*x^6 + ...
Leftmost column of triangle
A073154 (was previous name).
-
List([0..25],n->Sum([0..n],i->Binomial(2*i+1,i)*Binomial(2*i+1,n-i)/(2*i+1))); # Muniru A Asiru, Oct 11 2018
-
a:=n->add(binomial(2*i+1,i)*binomial(2*i+1,n-i)/(2*i+1),i=0..n): seq(a(n),n=0..25); # Muniru A Asiru, Oct 11 2018
-
Table[Sum[Binomial[2*i + 1, i]*Binomial[2*i + 1, n - i]/(2*i + 1), {i, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 11 2018 *)
-
a(n):=sum((sum((binomial(2*k+2,j-k)*binomial(2*k,k)/(k+1)),k,0,j))*(-1)^(n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
-
{a(n)=local(A=1); for(i=0,n-1,A=(1+x)*(1+x*(A+x*O(x^n))^2));polcoeff(A,n)} /* Paul D. Hanna, Mar 03 2008 */
A366221
G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^2*A(x)^3.
Original entry on oeis.org
1, 1, 5, 25, 145, 905, 5941, 40433, 282721, 2018897, 14661349, 107945993, 803922289, 6045458905, 45840518933, 350100674785, 2690717983169, 20794719218593, 161502488175557, 1259855507859193, 9867012143508305, 77554946281194793, 611575725258403061
Offset: 0
-
nmax = 22; A[_] = 1;
Do[A[x_] = 1 + x*(1 + x)^2*A[x]^3 + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = sum(k=0, n, binomial(2*k, n-k)*binomial(3*k, k)/(2*k+1));
A360076
a(n) = Sum_{k=0..n} binomial(3*k,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 5, 20, 90, 430, 2136, 10937, 57307, 305822, 1656482, 9083432, 50328114, 281324294, 1584578746, 8984740485, 51242962251, 293772468164, 1691974930584, 9785378133297, 56805049768157, 330880419984832, 1933299689139364, 11328101469158554
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*k, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*(1+x)^3)))
A360082
a(n) = Sum_{k=0..n} binomial(4*k,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 6, 27, 134, 709, 3892, 22004, 127250, 749230, 4476386, 27071344, 165398868, 1019405720, 6330482488, 39571612357, 248796862550, 1572300095758, 9981970108384, 63633339713190, 407162295120570, 2614059813642256, 16834457481559076
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*(1+x)^4)))
A366200
G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^3*A(x)^3.
Original entry on oeis.org
1, 1, 6, 33, 209, 1425, 10206, 75751, 577494, 4495368, 35582439, 285524184, 2317387098, 18990744137, 156918815760, 1305927563487, 10936673012579, 92098612059051, 779391530714589, 6624730079900931, 56532669993156696, 484156547579505717, 4159926573597719575
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*k, n-k)*binomial(3*k, k)/(2*k+1));
A073156
Main diagonal sequence of triangle A073153.
Original entry on oeis.org
1, 2, 9, 36, 156, 698, 3210, 15080, 72060, 349184, 1711869, 8475494, 42318018, 212843826, 1077391794, 5484472880, 28058940086, 144195777552, 744017466318, 3852968380624, 20019113126120, 104329129258596, 545214946753377
Offset: 0
-
a(n, r=2, s=2, t=2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 07 2024
A360083
a(n) = Sum_{k=0..n} binomial(5*k,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 7, 35, 189, 1092, 6538, 40278, 253730, 1626858, 10582616, 69669273, 463319257, 3107941405, 21004392887, 142882885210, 977562617826, 6722361860888, 46438235933700, 322111000796428, 2242538435656450, 15665017062799230, 109761527468995102
Offset: 0
-
Table[Sum[Binomial[5k,n-k]CatalanNumber[k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 13 2025 *)
-
a(n) = sum(k=0, n, binomial(5*k, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*(1+x)^5)))
A366216
G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^4*A(x)^4.
Original entry on oeis.org
1, 1, 8, 60, 520, 4886, 48384, 497460, 5259872, 56834345, 624819148, 6966612604, 78592083420, 895432704860, 10288759392156, 119089472755860, 1387274092156508, 16251727492295812, 191342076640423136, 2262894045516407118, 26869820052175649836
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k, n-k)*binomial(4*k, k)/(3*k+1));
Showing 1-10 of 19 results.
Comments