cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A362608 Number of integer partitions of n having a unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 11, 16, 21, 29, 43, 54, 78, 102, 131, 175, 233, 295, 389, 490, 623, 794, 1009, 1255, 1579, 1967, 2443, 3016, 3737, 4569, 5627, 6861, 8371, 10171, 12350, 14901, 18025, 21682, 26068, 31225, 37415, 44617, 53258, 63313, 75235, 89173, 105645
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,3,2,1) has greatest multiplicity 2, and a unique part of multiplicity 2 (namely 3), so is counted under a(9).
The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (221)    (33)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (511)
                            (11111)  (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

For parts instead of multiplicities we have A000041(n-1), ranks A102750.
For median instead of mode we have A238478, complement A238479.
These partitions have ranks A356862.
The complement is counted by A362607, ranks A362605.
For co-mode complement we have A362609, ranks A362606.
For co-mode we have A362610, ranks A359178.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=1, n, sum(j=1, n\m, x^(j*m)*(1-x^j)/(1 - x^(j*m)), A)*prod(j=1, n\m, (1 - x^(j*m))/(1 - x^j) + A)/prod(j=n\m+1, n, 1 - x^j + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=1} (Sum_{j>=1} x^(j*m)*(1 - x^j)/(1 - x^(j*m))) * (Product_{j>=1} (1 - x^(j*m))/(1 - x^j)). - Andrew Howroyd, May 04 2023

A362611 Number of modes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
a(n) depends only on the prime signature of n. - Andrew Howroyd, May 08 2023

Examples

			The factorization of 450 is 2*3*3*5*5, modes {3,5}, so a(450) = 2.
The factorization of 900 is 2*2*3*3*5*5, modes {2,3,5}, so a(900) = 3.
The factorization of 1500 is 2*2*3*5*5*5, modes {5}, so a(1500) = 1.
The factorization of 8820 is 2*2*3*3*5*7*7, modes {2,3,7}, so a(8820) = 3.
		

Crossrefs

Positions of first appearances are A002110.
Positions of 1's are A356862, counted by A362608.
Positions of terms > 1 are A362605, counted by A362607.
For co-mode we have A362613, counted by A362615.
This statistic (mode-count) has triangular form A362614.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A362606 ranks partitions with more than one co-mode, counted by A362609.

Programs

  • Mathematica
    Table[x=Last/@If[n==1,0,FactorInteger[n]];Count[x,Max@@x],{n,100}]
  • PARI
    a(n) = if(n==1, 0, my(f=factor(n)[,2], m=vecmax(f)); #select(v->v==m, f)) \\ Andrew Howroyd, May 08 2023
  • Python
    from sympy import factorint
    def A362611(n): return list(v:=factorint(n).values()).count(max(v,default=0)) # Chai Wah Wu, May 08 2023
    

Formula

For n > 1, 1 <= a(n) << log n. - Charles R Greathouse IV, May 09 2023
a(n) <= A001221(n), with equality if and only if n is a power of a squarefree number (A072774). - Amiram Eldar, Mar 02 2025

A356862 Numbers with a unique largest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Jens Ahlström, Sep 01 2022

Keywords

Comments

If the prime factorization of k has a unique largest exponent, then k is a term.
Numbers whose multiset of prime factors (with multiplicity) has a unique mode. - Gus Wiseman, May 12 2023
Disjoint union of A246655 and A376250. The asymptotic density of this sequence, 0.3660366524547281232052..., is equal to the density of A376250 since the prime powers have a zero density. - Amiram Eldar, Sep 17 2024

Examples

			Prime powers (A246655) are in the sequence, since they have only one prime exponent in their prime factorization, hence a unique largest exponent.
144 is in the sequence, since 144 = 2^4 * 3^2 and there is the unique largest exponent 4.
225 is not in the sequence, since 225 = 3^2 * 5^2 and the largest exponent 2 is not unique, but rather it is the exponent of both the prime factor 3 and of the prime factor 5.
		

Crossrefs

Subsequence of A319161 (which has additional terms 1, 180, 252, 300, 396, 450, 468, ...).
For factors instead of exponents we have A102750.
For smallest instead of largest we have A359178, counted by A362610.
The complement is A362605, counted by A362607.
The complement for co-mode is A362606, counted by A362609.
Partitions of this type are counted by A362608.
These are the positions of 1's in A362611, for co-modes A362613.
A001221 is the number of prime exponents, sum A001222.
A027746 lists prime factors, A112798 indices, A124010 exponents.
A362614 counts partitions by number of modes, A362615 co-modes.

Programs

  • Mathematica
    Select[Range[2, 100], Count[(e = FactorInteger[#][[;; , 2]]), Max[e]] == 1 &] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    isok(k) = if (k>1, my(f=factor(k), m=vecmax(f[,2]), w=select(x->(f[x,2] == m), [1..#f~])); #w == 1); \\ Michel Marcus, Sep 01 2022
  • Python
    from sympy import factorint
    from collections import Counter
    def ok(k):
        c = Counter(factorint(k)).most_common(2)
        return not (len(c) > 1 and c[0][1] == c[1][1])
    print([k for k in range(2, 105) if ok(k)])
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A356862_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))==1 or f[0]!=f[1],count(max(startvalue,2)))
    A356862_list = list(islice(A356862_gen(),30)) # Chai Wah Wu, Sep 10 2022
    

A362615 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k co-modes.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 10, 4, 1, 0, 13, 7, 2, 0, 16, 11, 3, 0, 23, 14, 4, 1, 0, 30, 19, 6, 1, 0, 35, 29, 11, 2, 0, 50, 34, 14, 3, 0, 61, 46, 23, 5, 0, 73, 69, 27, 6, 1, 0, 95, 81, 44, 10, 1, 0, 123, 105, 53, 14, 2
Offset: 0

Views

Author

Gus Wiseman, May 04 2023

Keywords

Comments

We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			Triangle begins:
   1
   0   1
   0   2
   0   2   1
   0   4   1
   0   5   2
   0   7   3   1
   0  10   4   1
   0  13   7   2
   0  16  11   3
   0  23  14   4   1
   0  30  19   6   1
   0  35  29  11   2
   0  50  34  14   3
   0  61  46  23   5
   0  73  69  27   6   1
   0  95  81  44  10   1
Row n = 8 counts the following partitions:
  (8)         (53)     (431)
  (44)        (62)     (521)
  (332)       (71)
  (422)       (3221)
  (611)       (3311)
  (2222)      (4211)
  (5111)      (32111)
  (22211)
  (41111)
  (221111)
  (311111)
  (2111111)
  (11111111)
		

Crossrefs

Row sums are A000041.
Row lengths are A002024.
Removing columns 0 and 1 and taking sums gives A362609, ranks A362606.
Column k = 1 is A362610, ranks A359178.
This statistic (co-mode count) is ranked by A362613.
For mode instead of co-mode we have A362614, ranked by A362611.
A008284 counts partitions by length.
A096144 counts partitions by number of minima, A026794 by maxima.
A238342 counts compositions by number of minima, A238341 by maxima.
A275870 counts collapsible partitions.

Programs

  • Mathematica
    comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[comsi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]

Formula

Sum_{k=0..A003056(n)} k * T(n,k) = A372632(n). - Alois P. Heinz, May 07 2024

A362610 Number of integer partitions of n having a unique part of least multiplicity.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 23, 30, 35, 50, 61, 73, 95, 123, 139, 187, 216, 269, 328, 411, 461, 594, 688, 836, 980, 1211, 1357, 1703, 1936, 2330, 2697, 3253, 3649, 4468, 5057, 6005, 6841, 8182, 9149, 10976, 12341, 14508, 16447, 19380, 21611, 25553, 28628
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

Alternatively, these are partitions with a part appearing fewer times than each of the others.

Examples

			The partition (3,3,2,2,2,1,1,1) has least multiplicity 2, and only one part of multiplicity 2 (namely 3), so is counted under a(15).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of multiplicities we have A002865, ranks A247180.
For median instead of co-mode we have A238478, complement A238479.
These partitions have ranks A359178.
For mode complement of co-mode we have A362607, ranks A362605.
For mode instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362609, ranks A362606.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=2, n+1, sum(j=1, n, x^(j*(m-1))/(1 + if(j*m<=n, x^(j*m)/(1-x^j) )) + A)*prod(j=1, n\m, 1 + x^(j*m)/(1 - x^j) + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=2} (Sum_{j>=1} x^(j*(m-1))/(1 + x^(j*m)/(1 - x^j))) * (Product_{j>=1} (1 + x^(j*m)/(1 - x^j))). - Andrew Howroyd, May 04 2023

A362613 Number of co-modes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

First differs from A327500 at n = 180.
First differs from A351946 at n = 180.
First differs from A353507 at n = 180.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.
a(n) depends only on the prime signature of n. - Andrew Howroyd, May 08 2023

Examples

			The factorization of 180 is 2*2*3*3*5, co-modes {5}, so a(180) = 1.
The factorization of 900 is 2*2*3*3*5*5, co-modes {2,3,5}, so a(900) = 3.
The factorization of 8820 is 2*2*3*3*5*7*7, co-modes {5}, so a(8820) = 1.
		

Crossrefs

Positions of first appearances are A002110.
Positions of 1's are A359178, counted by A362610.
Positions of terms > 1 are A362606, counted by A362609.
For mode we have A362611, counted by A362614.
Counting partitions by this statistic (co-mode count) gives A362615.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    Table[x=Last/@If[n==1,0,FactorInteger[n]];Count[x,Min@@x],{n,100}]
  • PARI
    a(n) = if(n==1, 0, my(f=factor(n)[,2], m=vecmin(f)); #select(v->v==m, f)) \\ Andrew Howroyd, May 08 2023
  • Python
    from sympy import factorint
    def A362613(n):
        v = factorint(n).values()
        w = min(v,default=0)
        return sum(1 for e in v if e<=w) # Chai Wah Wu, May 08 2023
    

A359178 Numbers with a unique smallest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117
Offset: 1

Views

Author

Jens Ahlström, Jan 08 2023

Keywords

Comments

180 is the smallest number with a unique smallest prime exponent that is not a member of A130091.

Examples

			2 = 2^1 is a term since it has 1 as a unique smallest exponent.
6 = 2^1 * 3^1 is not a term since it has two primes with the same smallest exponent.
180 = 2^2 * 3^2 * 5^1 is a term since it has 1 as a unique smallest exponent.
		

Crossrefs

For parts instead of multiplicities we have A247180, counted by A002865.
For greatest instead of smallest we have A356862, counted by A362608.
The complement is A362606, counted by A362609.
Partitions of this type are counted by A362610.
These are the positions of 1's in A362613, for modes A362611.
A001221 counts prime exponents and A001222 adds them up.
A027746 lists prime factors, A112798 indices, A124010 exponents.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Count[e, Min[e]] == 1]; Select[Range[2, 200], q] (* Amiram Eldar, Jan 08 2023 *)
  • PARI
    isok(n) = if (n>1, my(f=factor(n), e = vecmin(f[,2])); #select(x->(x==e), f[,2], 1) == 1); \\ Michel Marcus, Jan 27 2023
  • Python
    from sympy import factorint
    def ok(k):
      c = sorted(factorint(k).values())
      return len(c) == 1 or c[0] != c[1]
    print([k for k in range(2, 118) if ok(k)])
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A359178_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(f:=list(factorint(n).values())).count(min(f))==1,count(max(startvalue,2)))
    A359178_list = list(islice(A359178_gen(),20)) # Chai Wah Wu, Feb 08 2023
    

A362607 Number of integer partitions of n with more than one mode.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 13, 13, 23, 23, 33, 45, 56, 64, 90, 101, 137, 169, 208, 246, 320, 379, 469, 567, 702, 828, 1035, 1215, 1488, 1772, 2139, 2533, 3076, 3612, 4333, 5117, 6113, 7168, 8557, 10003, 11862, 13899, 16385, 19109, 22525, 26198, 30729, 35736
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,2,2,1,1) has greatest multiplicity 2, and two parts of multiplicity 2 (namely 1 and 2), so is counted under a(9).
The a(3) = 1 through a(9) = 9 partitions:
  (21)  (31)  (32)  (42)    (43)   (53)    (54)
              (41)  (51)    (52)   (62)    (63)
                    (321)   (61)   (71)    (72)
                    (2211)  (421)  (431)   (81)
                                   (521)   (432)
                                   (3311)  (531)
                                           (621)
                                           (32211)
                                           (222111)
		

Crossrefs

For parts instead of multiplicities we have A002865.
For median instead of mode we have A238479, complement A238478.
These partitions have ranks A362605.
The complement is counted by A362608, ranks A356862.
For co-mode we have A362609, ranks A362606.
For co-mode complement we have A362610, ranks A359178.
A000041 counts integer partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, `if`(t=2, 1, 0), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, 2, t))), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$2):
    seq(a(n), n=0..51);  # Alois P. Heinz, May 05 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]>1&]],{n,0,30}]
  • PARI
    G_x(N)={my(x='x+O('x^(N-1)), Ib(k,j) = if(k>j,1,0), A_x(u)=sum(i=1,N-u, sum(j=u+1, N-u, (x^(i*(u+j))*(1-x^u)*(1-x^j))/((1-x^(u*i))*(1-x^(j*i))) * prod(k=1,N-i*(u+j), (1-x^(k*(i+Ib(k,j))))/(1-x^k)))));
    concat([0,0,0],Vec(sum(u=1,N, A_x(u))))}
    G_x(51) \\ John Tyler Rascoe, Apr 05 2024

Formula

G.f.: Sum_{u>0} A(u,x) where A(u,x) = Sum_{i>0} Sum_{j>u} ( x^(i*(u+j))*(1-x^u)*(1-x^j) )/( (1-x^(u*i))*(1-x^(j*i)) ) * Product_{k>0} ( (1-x^(k*(i+[k>j])))/(1-x^k) ) is the g.f. for partitions of this kind with least mode u and [] is the Iverson bracket. - John Tyler Rascoe, Apr 05 2024

A362605 Numbers whose prime factorization has more than one mode. Numbers without a unique exponent of maximum frequency in the prime signature.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The prime indices of 180 are {1,1,2,2,3}, with modes {1,2}, so 180 is in the sequence, and the sequence differs from A182853.
The terms together with their prime indices begin:
     6: {1,2}
    10: {1,3}
    14: {1,4}
    15: {2,3}
    21: {2,4}
    22: {1,5}
    26: {1,6}
    30: {1,2,3}
    33: {2,5}
    34: {1,7}
    35: {3,4}
    36: {1,1,2,2}
    38: {1,8}
    39: {2,6}
    42: {1,2,4}
    46: {1,9}
    51: {2,7}
    55: {3,5}
		

Crossrefs

The first term with bigomega n appears to be A166023(n).
The complement is A356862, counted by A362608.
For co-mode complement we have A359178, counted by A362610.
For co-mode we have A362606, counted by A362609.
Partitions of this type are counted by A362607.
These are the positions of terms > 1 in A362611.
A112798 lists prime indices, length A001222, sum A056239.
A362614 counts partitions by number of modes, ranks A362611.
A362615 counts partitions by number of co-modes, ranks A362613.

Programs

  • Maple
    q:= n-> (l-> nops(l)>1 and l[-1]=l[-2])(sort(map(i-> i[2], ifactors(n)[2]))):
    select(q, [$1..250])[];  # Alois P. Heinz, May 10 2023
  • Mathematica
    Select[Range[100],Count[Last/@FactorInteger[#], Max@@Last/@FactorInteger[#]]>1&]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); if(#e < 2, 0, e = vecsort(e); e[#e-1] == e[#e]);} \\ Amiram Eldar, Jan 20 2024
  • Python
    from sympy import factorint
    def ok(n): return n>1 and (e:=list(factorint(n).values())).count(max(e))>1
    print([k for k in range(155) if ok(k)]) # Michael S. Branicky, May 06 2023
    

A362609 Number of integer partitions of n with more than one part of least multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 19, 26, 42, 51, 74, 103, 136, 174, 246, 303, 411, 523, 674, 844, 1114, 1364, 1748, 2174, 2738, 3354, 4247, 5139, 6413, 7813, 9613, 11630, 14328, 17169, 20958, 25180, 30497, 36401, 44025, 52285, 62834, 74626, 89111, 105374, 125662
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

These are partitions where no part appears fewer times than all of the others.

Examples

			The partition (4,2,2,1) has least multiplicity 1, and two parts of multiplicity 1 (namely 1 and 4), so is counted under a(9).
The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)
              (41)  (51)    (52)    (62)     (63)
                    (321)   (61)    (71)     (72)
                    (2211)  (421)   (431)    (81)
                            (3211)  (521)    (432)
                                    (3221)   (531)
                                    (3311)   (621)
                                    (4211)   (3321)
                                    (32111)  (4221)
                                             (4311)
                                             (5211)
                                             (42111)
                                             (222111)
                                             (321111)
		

Crossrefs

For parts instead of multiplicities we have A117989, ranks A283050.
For median instead of co-mode we have A238479, complement A238478.
These partitions have ranks A362606.
For mode instead of co-mode we have A362607, ranks A362605.
For mode complement instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362610, ranks A359178.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]>1&]],{n,0,30}]
Showing 1-10 of 28 results. Next