A362608 Number of integer partitions of n having a unique mode.
0, 1, 2, 2, 4, 5, 7, 11, 16, 21, 29, 43, 54, 78, 102, 131, 175, 233, 295, 389, 490, 623, 794, 1009, 1255, 1579, 1967, 2443, 3016, 3737, 4569, 5627, 6861, 8371, 10171, 12350, 14901, 18025, 21682, 26068, 31225, 37415, 44617, 53258, 63313, 75235, 89173, 105645
Offset: 0
Keywords
Examples
The partition (3,3,2,1) has greatest multiplicity 2, and a unique part of multiplicity 2 (namely 3), so is counted under a(9). The a(1) = 1 through a(7) = 11 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (111) (22) (221) (33) (322) (211) (311) (222) (331) (1111) (2111) (411) (511) (11111) (3111) (2221) (21111) (3211) (111111) (4111) (22111) (31111) (211111) (1111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]==1&]],{n,0,30}]
-
PARI
seq(n) = my(A=O(x*x^n)); Vec(sum(m=1, n, sum(j=1, n\m, x^(j*m)*(1-x^j)/(1 - x^(j*m)), A)*prod(j=1, n\m, (1 - x^(j*m))/(1 - x^j) + A)/prod(j=n\m+1, n, 1 - x^j + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023
Formula
G.f.: Sum_{m>=1} (Sum_{j>=1} x^(j*m)*(1 - x^j)/(1 - x^(j*m))) * (Product_{j>=1} (1 - x^(j*m))/(1 - x^j)). - Andrew Howroyd, May 04 2023
Comments