cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A377949 Numbers k such that k | A377484(k) and (k+1) | A377484(k+1).

Original entry on oeis.org

156519, 245024, 310155, 524799, 638000, 893024, 1079000, 2055780, 2095975, 2203200, 2566025, 2592512, 2853135, 2934063, 3213375, 3294719, 4056975, 4322240, 4471935, 5746455, 6515145, 7289919, 7316000, 7329608, 7866495, 8459360, 8555624, 8934464, 9035415, 11291091
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2024

Keywords

Comments

Numbers k such that k and k+1 are both terms in A056954.

Examples

			156519 is a term since A377484(156519) is divisible by 156519 and A377484(156520) is divisible by 156520.
		

Crossrefs

Cf. A377484.
Subsequence of A056954.
Similar sequences: A355332, A377951, A377953.

Programs

  • Mathematica
    q[n_] := q[n] = Divisible[Times @@ (Rest@ Divisors[n] - 1), n]; Select[Range[10^6], q[#] && q[#+1] &]
  • PARI
    is1(k) = if(k == 1, 1, my(d = divisors(k)); !(prod(i = 2, #d, d[i]-1) % k));
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A378053 a(n) = gcd(Product_{d|n} (d + 1), Product_{d|n, d>1} (d - 1)) = gcd(A020696(n), A377484(n)).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 2, 3, 16, 36, 2, 30, 4, 6, 16, 45, 4, 80, 2, 108, 16, 6, 2, 210, 24, 12, 32, 18, 4, 1008, 2, 45, 64, 12, 48, 8400, 4, 18, 16, 2268, 4, 240, 2, 90, 512, 18, 2, 3150, 32, 216, 64, 540, 4, 160, 144, 2430, 32, 12, 2, 166320, 4, 6, 1280, 405, 48, 1344
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD[Times @@ ((d = Divisors[n]) + 1), Times @@ (Rest@ d - 1)]; Array[a, 70]
  • PARI
    a(n) = if(n == 1, 1, my(d = divisors(n)); gcd(prod(k=1, #d, d[k]+1), prod(k=2, #d, d[k]-1)));

Formula

a(n) = 2 if and only if n = 6 or n is a prime of the form 4*k+3 (A002145).
a(n) = 4 if and only if n is a prime of the form 4*k+1 (A002144).
a(n) == 1 (mod 2) if and only if n is a power of 2 (A000079).

A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0

Views

Author

Keywords

Comments

Product floor(n/1)*floor(n/2)*floor(n/3)*...*floor(n/n).
a(n) is the number of functions f:[n]->[n] where f(x) is a multiple of x for all x in [n]. We note that there are floor[n/x] possible choices for each image of x under f. [Dennis P. Walsh, Nov 06 2014]

Examples

			For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
		

Crossrefs

Programs

  • Haskell
    a010786 n = product $ map (div n) [1..n]
    -- Reinhard Zumkeller, Feb 26 2012
    
  • Magma
    [&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
  • Maple
    a := n -> mul( floor(n/k), k=1..n);
  • Mathematica
    Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
    

Formula

a(n+1) = a(n)*A208449(n)/A208450(n). - Reinhard Zumkeller, Feb 26 2012
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
a(n) = A092143(n)/g(n), where g(n) = Product_{k=1..n} A377484(k).
a(n)/a(n-1) = A007955(n)/A377484(n). (End)

Extensions

More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A056954 Numbers k such that k^2 divides A056819(k).

Original entry on oeis.org

1, 30, 60, 90, 105, 120, 132, 144, 168, 180, 210, 240, 252, 264, 280, 336, 360, 380, 396, 420, 495, 504, 520, 528, 540, 546, 552, 560, 612, 616, 630, 660, 720, 728, 756, 760, 792, 840, 858, 870, 900, 924, 990, 1008, 1040, 1050, 1056, 1080, 1092, 1104
Offset: 1

Views

Author

Leroy Quet, Sep 06 2000

Keywords

Comments

From Amiram Eldar, Nov 12 2024: (Start)
Equivalently, numbers k that divide A377484(k) = Product_{d|k, d>1} (d - 1).
After the first term a(1) = 1, the next odd term is a(5) = 105, the next term that is coprime to 6 is a(228) = 6545, and the next term that is coprime to 30 is a(574) = 19019. (End)

Examples

			30 is a term because 30^2 divides A056819(30) = 5320224000.
		

Crossrefs

A377949 is a subsequence.
Similar sequences: A355331, A377950, A377952.

Programs

  • Mathematica
    Select[Range[1000], Divisible[Times @@ (Rest@ Divisors[#] - 1), #] &] (* Amiram Eldar, Nov 12 2024 *)
  • PARI
    is(k) = if(k == 1, 1, my(d = divisors(k)); !(prod(i = 2, #d, d[i]-1) % k)); \\ Amiram Eldar, Nov 12 2024

A208449 Numerator of A010786(n+1) / A010786(n).

Original entry on oeis.org

2, 3, 8, 5, 18, 7, 64, 27, 25, 11, 288, 13, 98, 225, 1024, 17, 729, 19, 2000, 147, 242, 23, 55296, 125, 169, 729, 10976, 29, 1125, 31, 32768, 1089, 289, 1225, 209952, 37, 722, 507, 640000, 41, 64827, 43, 42592, 91125, 1058, 47, 14155776, 343, 15625, 2601
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2012

Keywords

Crossrefs

Cf. A208450 (denominator).

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a208449 n = a208449_list !! (n-1)
    a208449_list = map numerator $
       zipWith (%) (tail a010786_list) a010786_list
    
  • Mathematica
    A208449[n_] := Times @@ # / GCD[Times @@ #, Times @@ (# - 1)] & [Rest[Divisors[n + 1]]];
    Array[A208449, 100] (* Paolo Xausa, Feb 20 2025 *)
  • PARI
    f(n) = prod(k=1, n, n\k); \\ A010786
    a(n) = numerator(f(n+1)/f(n)); \\ Michel Marcus, Feb 08 2025

Formula

a(n) = A010786(n+1) / A208448(n).
a(n) = A007955(n+1)/gcd(A007955(n+1), A377484(n+1)). - Ridouane Oudra, Feb 03 2025

A208450 Denominator of A010786(n+1) / A010786(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 21, 16, 9, 10, 55, 12, 39, 112, 315, 16, 170, 18, 513, 80, 105, 22, 8855, 96, 75, 416, 3159, 28, 203, 30, 9765, 640, 132, 816, 32725, 36, 333, 304, 140049, 40, 13325, 42, 13545, 39424, 495, 46, 2080925, 288, 5292, 1600, 11475, 52, 117130
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2012

Keywords

Crossrefs

Cf. A208449 (numerator).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a208450 n = a208450_list !! (n-1)
    a208450_list = map denominator $
       zipWith (%) (tail a010786_list) a010786_list
  • Mathematica
    A208450[n_] := Times @@ (# - 1) / GCD[Times @@ #, Times @@ (# - 1)] & [Rest[Divisors[n + 1]]];
    Array[A208450, 100] (* Paolo Xausa, Feb 20 2025 *)

Formula

a(n) = A010786(n) / A208448(n).
a(n) = A377484(n+1)/gcd(A007955(n+1), A377484(n+1)). - Ridouane Oudra, Feb 08 2025

A378054 Numbers k that divide A378053(k) = gcd(Product_{d|k} (d + 1), Product_{d|k, d>1} (d - 1)).

Original entry on oeis.org

1, 60, 90, 120, 144, 168, 180, 210, 240, 252, 280, 336, 360, 420, 504, 540, 560, 630, 660, 720, 840, 900, 924, 990, 1008, 1056, 1080, 1092, 1200, 1260, 1320, 1404, 1440, 1512, 1560, 1680, 1800, 1848, 1872, 1890, 1980, 2016, 2100, 2112, 2160, 2184, 2310, 2376, 2400
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Comments

After the first term a(1) = 1, the next odd term is a(71) = 3465, the next term that is coprime to 6 is a(1058) = 95095, and the next term that is coprime to 30 is a(12174) = 2263261.

Examples

			60 is a term since A378053(60) = 166320 = 60 * 2772 is divisible by 60.
		

Crossrefs

Intersection of A056954 and A355331.
A378055 is a subsequence.

Programs

  • Mathematica
    Select[Range[2500], And @@ Divisible[{Times @@ ((d = Divisors[#]) + 1), Times @@ (Rest @ d - 1)}, #] &]
  • PARI
    is(k) = if(k == 1, 1, my(d = divisors(k)); !(gcd(prod(k=1, #d, d[k]+1), prod(k=2, #d, d[k]-1)) % k));

A378055 Numbers k such that k | A378053(k) and (k+1) | A378053(k+1).

Original entry on oeis.org

638000, 13466816, 14753024, 16092999, 19494189, 38137749, 63668079, 80061344, 86119704, 107232255, 112375899, 121550624, 127205000, 154466675, 294147854, 391738599, 553140224, 561712095, 682199595, 728999999, 871651143, 879207615, 911062844, 920985624, 1017609999
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Crossrefs

Intersection of A355332 and A377949.
Subsequence of A378054.

Programs

  • Mathematica
    q[n_] := q[n] = And @@ Divisible[{Times @@ ((d = Divisors[n]) + 1), Times @@ (Rest@d - 1)}, n]; Select[Range[2*10^7], q[#] && q[# + 1] &]
  • PARI
    is1(k) = if(k == 1, 1, my(d = divisors(k)); !(gcd(prod(k=1, #d, d[k]+1), prod(k=2, #d, d[k]-1)) % k));
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Showing 1-8 of 8 results.