cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A092526 Decimal expansion of (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3, the real root of x^3 - x^2 - 1.

Original entry on oeis.org

1, 4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2004

Keywords

Comments

This is the limit x of the ratio N(n+1)/N(n) for n -> infinity of the Narayana sequence N(n) = A000930(n). The real root of x^3 - x^2 - 1. See the formula section. - Wolfdieter Lang, Apr 24 2015
This is the fourth smallest Pisot number. - Iain Fox, Oct 13 2017
Sometimes called the supergolden ratio or Narayana's cows constant, and denoted by the symbol psi. - Ed Pegg Jr, Feb 01 2019

Examples

			1.46557123187676802665673122521993910802557756847228570164318311124926...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.3.
  • Paul J. Nahin, The Logician and the Engineer, How George Boole and Claude Shannon Created the Information Age, Princeton University Press, Princeton and Oxford, 2013, Chap. 7: Some Combinational Logic Examples, Section 7.1: Channel Capacity, Shannon's Theorem, and Error-Detection Theory, page 120.

Crossrefs

Other Pisot numbers: A060006, A086106, A228777, A293506, A293508, A293509, A293557.
Cf. A381124 (numerators of convergents).
Cf. A381125 (denominators of convergents).

Programs

  • Mathematica
    RealDigits[(2 Cos[ ArcCos[ 29/2]/3] + 1)/3, 10, 111][[1]] (* Robert G. Wilson v, Apr 12 2004 *)
    RealDigits[ Solve[ x^3 - x^2 - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 10 2013 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b092526.txt", n, " ", d));  \\ Harry J. Smith, Jun 21 2009

Formula

The real root of x^3 - x^2 - 1. - Franklin T. Adams-Watters, Oct 12 2006
The only real irrational root of x^4-x^2-x-1 (-1 is also a root). [Nahim]
Equals (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3.
Equals 1 + A088559.
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) + 1/3. - Vaclav Kotesovec, Dec 18 2014
Equals 1/A263719. - Alois P. Heinz, Apr 15 2018
Equals (1 + 1/r + r)/3 where r = ((29 + sqrt(837))/2)^(1/3). - Peter Luschny, Apr 04 2020
Equals (1/3)*(1 + ((1/2)*(29 + (3*sqrt(93))))^(1/3) + ((1/2)*(29 - 3*sqrt(93)))^(1/3)). See A075778. - Wolfdieter Lang, Aug 17 2022

A369346 Continued fraction expansion of the real root of x^3 - x^2 - 1 = 0.

Original entry on oeis.org

1, 2, 6, 1, 3, 5, 4, 22, 1, 1, 4, 1, 2, 84, 1, 3, 1, 6, 1, 3, 1, 9, 1, 1, 1, 1, 19, 3, 1, 2, 1, 5, 1, 5, 2, 2, 1, 1, 1, 1, 76, 6, 8, 1, 1, 5, 1, 5, 1, 1, 25, 1, 2, 1, 116, 2, 1, 8, 1, 1, 3, 1, 53, 5, 276, 2, 1, 1, 1, 3, 3, 2, 1, 1, 4, 13, 1, 1, 1, 4, 1, 1, 1, 9, 9, 1, 1, 9, 6, 1, 2, 32
Offset: 0

Views

Author

Patrick McKinley, Jan 20 2024

Keywords

Crossrefs

Cf. A092526 (decimal expansion), A381124, A381125 (convergents).

Programs

  • Mathematica
    ContinuedFraction[x/.First[Solve[x^3-x^2-1==0,x]],92] (* Stefano Spezia, Jan 21 2024 *)
  • PARI
    \p100 \\ realprecision
    contfrac(solve(x = 1, 2, x^3 - x^2 - 1),, 80) \\ Hugo Pfoertner, Jan 21 2024
  • bc
    /* The "test" calculation evaluates the cubic to confirm the calculation of the root. */
    define iter(frac)
    {j = 0
     while(frac > 1){
       frac -= 1;
       j+=1}
     j
     return 1/frac}
    scale=12578
    f=(1+(e(l(((29+3*sqrt(93))/2))/3))+(e(l(((29-3*sqrt(93))/2))/3)))/3
    psi=f
    test=(psi-1)*psi*psi-1
    for(i=0;i<12175;i++)f=iter(f)
    

Extensions

Offset changed by Andrew Howroyd, Feb 14 2025

A381125 Denominators of the convergents to the supergolden ratio.

Original entry on oeis.org

1, 2, 13, 15, 58, 305, 1278, 28421, 29699, 58120, 262179, 320299, 902777, 76153567, 77056344, 307322599, 384378943, 2613596257, 2997975200, 11607521857, 14605497057, 143056995370, 157662492427, 300719487797, 458381980224, 759101468021, 14881309872623
Offset: 0

Views

Author

Eric W. Weisstein, Feb 14 2025

Keywords

Crossrefs

Cf. A092526 (decimal digits), A369346 (continued fraction).
Cf. A381124 (numerators of convergents).

Programs

  • Mathematica
    Denominator[Convergents[Root[-1 - #^2 + #^3&, 1, 0], 20]]
Showing 1-3 of 3 results.