A237270
Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(n).
Original entry on oeis.org
1, 3, 2, 2, 7, 3, 3, 12, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 28, 7, 7, 12, 12, 8, 8, 8, 31, 9, 9, 39, 10, 10, 42, 11, 5, 5, 11, 18, 18, 12, 12, 60, 13, 5, 13, 21, 21, 14, 6, 6, 14, 56, 15, 15, 72, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 12, 18, 91, 19, 19, 30, 30, 20, 8, 8, 20, 90
Offset: 1
Illustration of the first 27 terms as regions (or parts) of a spiral constructed with the first 15.5 rows of A239660:
.
. _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
. | | |_ _ _ _ _ _ _|
. 12 _| | |
. |_ _| _ _ _ _ _ _ |_ _
. 12 _ _| | _ _ _ _ _|_ _ _ _ _ 5 |_
. _ _ _| | 9 _| | |_ _ _ _ _| |
. | _ _ _| 9 _|_ _| |_ _ 3 |_ _ _ 7
. | | _ _| | _ _ _ _ |_ | | |
. | | | _ _| 12 _| _ _ _|_ _ _ 3 |_|_ _ 5 | |
. | | | | _| | |_ _ _| | | | |
. | | | | | _ _| |_ _ 3 | | | |
. | | | | | | 3 _ _ | | | | | |
. | | | | | | | _|_ 1 | | | | | |
. _|_| _|_| _|_| _|_| |_| _|_| _|_| _|_| _
. | | | | | | | | | | | | | | | |
. | | | | | | |_|_ _ _| | | | | | | |
. | | | | | | 2 |_ _|_ _| _| | | | | | |
. | | | | |_|_ 2 |_ _ _|7 _ _| | | | | |
. | | | | 4 |_ _| _ _| | | | |
. | | |_|_ _ |_ _ _ _ | _| _ _ _| | | |
. | | 6 |_ |_ _ _ _|_ _ _ _| | 15 _| _ _| | |
. |_|_ _ _ |_ 4 |_ _ _ _ _| _| | _ _ _| |
. 8 | |_ _ | | _| | _ _ _|
. |_ | |_ _ _ _ _ _ | _ _|28 _| |
. |_ |_ |_ _ _ _ _ _|_ _ _ _ _ _| | _| _|
. 8 |_ _| 6 |_ _ _ _ _ _ _| _ _| _|
. | | _ _| 31
. |_ _ _ _ _ _ _ _ | |
. |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
. 8 |_ _ _ _ _ _ _ _ _|
.
.
[For two other drawings of the spiral see the links. - _N. J. A. Sloane_, Nov 16 2020]
If the sequence does not contain negative terms then its terms can be represented in a quadrant. For the construction of the diagram we use the symmetric Dyck paths of A237593 as shown below:
---------------------------------------------------------------
Triangle Diagram of the symmetry of sigma (n = 1..24)
---------------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1; |_| | | | | | | | | | | | | | | | | | | | | | | |
3; |_ _|_| | | | | | | | | | | | | | | | | | | | | |
2, 2; |_ _| _|_| | | | | | | | | | | | | | | | | | | |
7; |_ _ _| _|_| | | | | | | | | | | | | | | | | |
3, 3; |_ _ _| _| _ _|_| | | | | | | | | | | | | | | |
12; |_ _ _ _| _| | _ _|_| | | | | | | | | | | | | |
4, 4; |_ _ _ _| |_ _|_| _ _|_| | | | | | | | | | | |
15; |_ _ _ _ _| _| | _ _ _|_| | | | | | | | | |
5, 3, 5; |_ _ _ _ _| | _|_| | _ _ _|_| | | | | | | |
9, 9; |_ _ _ _ _ _| _ _| _| | _ _ _|_| | | | | |
6, 6; |_ _ _ _ _ _| | _| _| _| | _ _ _ _|_| | | |
28; |_ _ _ _ _ _ _| |_ _| _| _ _| | | _ _ _ _|_| |
7, 7; |_ _ _ _ _ _ _| | _ _| _| _| | | _ _ _ _|
12, 12; |_ _ _ _ _ _ _ _| | | | _|_| |* * * *
8, 8, 8; |_ _ _ _ _ _ _ _| | _ _| _ _|_| |* * * *
31; |_ _ _ _ _ _ _ _ _| | _ _| _| _ _|* * * *
9, 9; |_ _ _ _ _ _ _ _ _| | |_ _ _| _|* * * * * *
39; |_ _ _ _ _ _ _ _ _ _| | _ _| _|* * * * * * *
10, 10; |_ _ _ _ _ _ _ _ _ _| | | |* * * * * * * *
42; |_ _ _ _ _ _ _ _ _ _ _| | _ _ _|* * * * * * * *
11, 5, 5, 11; |_ _ _ _ _ _ _ _ _ _ _| | |* * * * * * * * * * *
18, 18; |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
12, 12; |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
60; |_ _ _ _ _ _ _ _ _ _ _ _ _|* * * * * * * * * * *
...
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n), the sum of all divisors of all positive integers <= n, hence the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n).
For n = 9 the 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5], so row 9 is [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the sum of the parts of the symmetric representation of sigma(9) is 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
For n = 24 the 24th row of A237593 is [13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13] and the 23rd row of A237593 is [12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12] therefore between both symmetric Dyck paths there are only one region (or part) of size 60, so row 24 is 60.
The sum of divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = A000203(24) = 60. On the other hand the sum of the parts of the symmetric representation of sigma(24) is 60, equaling the sum of divisors of 24.
Note that the number of *'s in the diagram is 24^2 - A024916(24) = 576 - 491 = A004125(24) = 85.
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem).
For n = 15 the diagram with first 15 levels looks like this:
.
Level "Double-staircases" diagram
. _
1 _|1|_
2 _|1 _ 1|_
3 _|1 |1| 1|_
4 _|1 _| |_ 1|_
5 _|1 |1 _ 1| 1|_
6 _|1 _| |1| |_ 1|_
7 _|1 |1 | | 1| 1|_
8 _|1 _| _| |_ |_ 1|_
9 _|1 |1 |1 _ 1| 1| 1|_
10 _|1 _| | |1| | |_ 1|_
11 _|1 |1 _| | | |_ 1| 1|_
12 _|1 _| |1 | | 1| |_ 1|_
13 _|1 |1 | _| |_ | 1| 1|_
14 _|1 _| _| |1 _ 1| |_ |_ 1|_
15 |1 |1 |1 | |1| | 1| 1| 1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level "Ziggurat" diagram
. _
6 |1|
7 _ | | _
8 _|1| _| |_ |1|_
9 _|1 | |1 1| | 1|_
10 _|1 | | | | 1|_
11 _|1 | _| |_ | 1|_
12 _|1 | |1 1| | 1|_
13 _|1 | | | | 1|_
14 _|1 | _| _ |_ | 1|_
15 |1 | |1 |1| 1| | 1|
.
The 15th row
of A249351 : [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of triangle: [ 8, 8, 8 ]
The 15th row
of A296508: [ 8, 7, 1, 0, 8 ]
The 15th row
of A280851 [ 8, 7, 1, 8 ]
.
More generally, for n >= 1, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n.
For the definition of subparts see A239387 and also A296508, A280851. (End)
- Robert Price, Table of n, a(n) for n = 1..15542 (rows n = 1..5000, flattened)
- Hartmut F. W. Hoft, Sample visual documentation for Mathematica code
- Michel Marcus, A colored version of the symmetric representation of sigma(n), multipage, n = 1..85
- Omar E. Pol, An infinite stepped pyramid (A237593, A237270, A262626)
- Omar E. Pol, Perspective view of the stepped pyramid (16 levels)
- Omar E. Pol, Perspective view of the stepped pyramid into four quadrants (11 levels). This is formed by combing four copies of the pyramid back-to-back (cf. A244050).
- N. J. A. Sloane, Another drawing of the spiral
- N. J. A. Sloane, Spiral showing only the outer boundary
- Index entries for sequences related to sigma(n)
Cf.
A000203,
A004125,
A023196,
A024916,
A153485,
A196020,
A221529,
A231347,
A235791,
A235796,
A236104,
A236112,
A236540,
A237046,
A237048,
A237271,
A237590,
A237591,
A237593,
A239050,
A239660,
A239663,
A239665,
A239931,
A239932,
A239933,
A239934,
A240020,
A240062,
A244050,
A245092,
A249351,
A262626,
A280850,
A280851,
A296508,
A335616,
A340035,
A384149.
-
T[n_,k_] := Ceiling[(n + 1)/k - (k + 1)/2] (* from A235791 *)
path[n_] := Module[{c = Floor[(Sqrt[8n + 1] - 1)/2], h, r, d, rd, k, p = {{0, n}}}, h = Map[T[n, #] - T[n, # + 1] &, Range[c]]; r = Join[h, Reverse[h]]; d = Flatten[Table[{{1, 0}, {0, -1}}, {c}], 1];
rd = Transpose[{r, d}]; For[k = 1, k <= 2c, k++, p = Join[p, Map[Last[p] + rd[[k, 2]] * # &, Range[rd[[k, 1]]]]]]; p]
segments[n_] := SplitBy[Map[Min, Drop[Drop[path[n], 1], -1] - path[n - 1]], # == 0 &]
a237270[n_] := Select[Map[Apply[Plus, #] &, segments[n]], # != 0 &]
Flatten[Map[a237270, Range[40]]] (* data *)
(* Hartmut F. W. Hoft, Jun 23 2014 *)
Drawing of the spiral extended by
Omar E. Pol, Nov 22 2020
A237271
Number of parts in the symmetric representation of sigma(n).
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1
Illustration of initial terms (n = 1..12):
---------------------------------------------------------
n A000203 A237270 a(n) Diagram
---------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 1 |_| | | | | | | | | | | |
2 3 3 1 |_ _|_| | | | | | | | | |
3 4 2+2 2 |_ _| _|_| | | | | | | |
4 7 7 1 |_ _ _| _|_| | | | | |
5 6 3+3 2 |_ _ _| _| _ _|_| | | |
6 12 12 1 |_ _ _ _| _| | _ _|_| |
7 8 4+4 2 |_ _ _ _| |_ _|_| _ _|
8 15 15 1 |_ _ _ _ _| _| |
9 13 5+3+5 3 |_ _ _ _ _| | _|
10 18 9+9 2 |_ _ _ _ _ _| _ _|
11 12 6+6 2 |_ _ _ _ _ _| |
12 28 28 1 |_ _ _ _ _ _ _|
...
For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3.
From _Omar E. Pol_, Dec 21 2016: (Start)
Illustration of the diagram of subparts (n = 1..12):
---------------------------------------------------------
n A000203 A279391 A001227 Diagram
---------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 1 |_| | | | | | | | | | | |
2 3 3 1 |_ _|_| | | | | | | | | |
3 4 2+2 2 |_ _| _|_| | | | | | | |
4 7 7 1 |_ _ _| _ _|_| | | | | |
5 6 3+3 2 |_ _ _| |_| _ _|_| | | |
6 12 11+1 2 |_ _ _ _| _| | _ _|_| |
7 8 4+4 2 |_ _ _ _| |_ _|_| _ _ _|
8 15 15 1 |_ _ _ _ _| _| _| |
9 13 5+3+5 3 |_ _ _ _ _| | _| _|
10 18 9+9 2 |_ _ _ _ _ _| |_ _|
11 12 6+6 2 |_ _ _ _ _ _| |
12 28 23+5 2 |_ _ _ _ _ _ _|
...
For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2.
For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End)
From _Hartmut F. W. Hoft_, Dec 26 2016: (Start)
Two examples of the general argument in the Comments section:
Rows 27 in A237048 and A249223 (4 parts)
i: 1 2 3 4 5 6 7 8 9 . . 12
27: 1 1 1 0 0 1 1's in A237048 for odd divisors
1 27 3 9 odd divisors represented
27: 1 0 1 1 1 0 0 1 1 1 0 1 blocks forming parts in A249223
Rows 81 in A237048 and A249223 (5 parts)
i: 1 2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24
81: 1 1 1 0 0 1 0 0 1 0 0 0 1's in A237048 f.o.d
1 81 3 27 9 odd div. represented
81: 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 blocks fp in A249223
(End)
Cf.
A000203,
A000265,
A001065,
A001227,
A005279,
A024916,
A060831,
A061345,
A067742,
A071561,
A071562,
A175254,
A196020,
A221529,
A235791,
A236104,
A237048,
A237591,
A237593,
A239657,
A244050,
A244971,
A245092,
A249223,
A250068,
A261699,
A262045,
A262612,
A262626,
A274824,
A279387,
A279693,
A319073,
A340583,
A340846,
A342344,
A347186,
A379288.
Cf.
A027750,
A174973 (2-dense numbers),
A239663,
A240062,
A243982,
A379379,
A380580,
A384149,
A384222,
A384225,
A384226,
A384230,
A384930.
-
a237271[n_] := Length[a237270[n]] (* code defined in A237270 *)
Map[a237271, Range[90]] (* data *)
(* Hartmut F. W. Hoft, Jun 23 2014 *)
a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar, Dec 22 2024 *)
-
fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;}
findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);}
zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;}
docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;}
docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;}
nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);}
lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
-
from sympy import divisors
def a(n: int) -> int:
divs = list(divisors(n))
d = [divs[i:i+2] for i in range(len(divs) - 1)]
s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0])
return s + 1
print([a(n) for n in range(1, 80)]) # Peter Luschny, Aug 05 2025
A239663
a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts.
Original entry on oeis.org
1, 3, 9, 21, 63, 147, 357, 903, 2499, 6069, 13915, 29095, 59455, 142945, 320045, 643885, 1367465, 3287735, 6779135, 13853015, 30262595, 61773745
Offset: 1
------------------------------------------------------
n a(n) A239665 A266094(n)
------------------------------------------------------
1 1 [1] 1
2 3 [2, 2] 4
3 9 [5, 3, 5] 13
4 21 [11, 5, 5, 11] 32
5 63 [32, 12, 16, 12, 32] 104
...
For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below:
.
. _ _ _ _ _ 5
. |_ _ _ _ _|
. |_ _ 3
. |_ |
. |_|_ _ 5
. | |
. | |
. | |
. | |
. |_|
.
Cf.
A000203,
A196020,
A236104,
A235791,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A239657,
A239660,
A239665,
A239931-
A239934,
A245092,
A262626,
A266094.
-
(* a239663[] permits computation in intervals *)
(* Function a237270[] is defined in A237270 *)
(* variable "list" contains the first occurrences up to m *)
a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts]
a239663[{1}, {1, 1000}] (* computes the first 8 values *)
(* Hartmut F. W. Hoft, Jul 08 2014 *)
(* support functions are defined in A341969, A341970 & A341971 *)
a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
a239663[62000000,22] (* Hartmut F. W. Hoft, Sep 22 2021 *)
A379288
Irregular triangle read by rows in which row n lists the odd divisors of n excluding odd divisors e for which there exists another divisor j with j < e < 2*j.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 5, 1, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 1, 13, 1, 7, 1, 3, 15, 1, 1, 17, 1, 1, 19, 1, 1, 3, 7, 21, 1, 11, 1, 23, 1, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 1, 29, 1, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 35, 1, 1, 37, 1, 19, 1, 3, 13, 39, 1, 1, 41, 1, 1, 43
Offset: 1
These are the odd terms of
A379374.
-
row[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, Select[Join[{1}, Select[d, #[[2]] >= 2*#[[1]] &][[;; , 2]]], OddQ]]; Table[row[n], {n, 1, 50}] // Flatten (* Amiram Eldar, Dec 22 2024 *)
A384222
Irregular triangle read by rows: T(n,k) is the length of the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 1, 1, 2, 2, 1, 2, 1, 5, 1, 1, 6, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 1, 8, 1, 1, 1, 2, 2, 1, 1, 1, 1, 6, 1, 1, 8, 1, 1, 6, 1, 1, 1, 1, 2, 2, 1, 2, 1, 9, 1, 1, 2, 2, 1, 1, 1, 1, 8, 1, 1, 8, 1, 1, 3, 3, 1, 4, 1, 2, 2, 1, 1, 10, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 8
Offset: 1
----------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
----------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 2; | [1, 2]; | 1 |
| 3 | 1, 1; | [1], [3]; | 2 |
| 4 | 3; | [1, 2, 4]; | 1 |
| 5 | 1, 1; | [1], [5]; | 2 |
| 6 | 4; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 1; | [1], [7]; | 2 |
| 8 | 4; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 1, 1; | [1], [3], [9]; | 3 |
| 10 | 2, 2; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 1; | [1], [11]; | 2 |
| 12 | 6; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 1; | [1], [13]; | 2 |
| 14 | 2, 2; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 5; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 1; | [1], [17]; | 2 |
| 18 | 6; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 1; | [1], [19]; | 2 |
| 20 | 6; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 |
| 22 | 2, 2; | [1, 2], [11, 22]; | 2 |
| 23 | 1, 1; | [1], [23]; | 2 |
| 24 | 8; | [1, 2, 3, 4, 6, 8, 12, 24]; | 1 |
...
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has two terms, so the row 14 is [2, 2].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of terms in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
78 is the first practical number A005153 not in A174973. For n = 78 the list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two sublists of divisors of 78 whose terms increase by a factor of at most 2, they are [1, 2, 3, 6] and [13, 26, 39, 78]. The number of terms in the sublists are [4, 4] respectively, so the row 78 is [4, 4].
From _Omar E. Pol_, Jul 23 2025: (Start)
A visualization with symmetries of the list of divisors of the first 24 positive integers and the sublists of divisors is as shown below:
---------------------------------------------------------------------------------
| n | List of divisors of n | Number of |
| | [with sublists of divisors in brackets] | sublists |
---------------------------------------------------------------------------------
| 1 | [1] | 1 |
| 2 | [1 2] | 1 |
| 3 | [1] [3] | 2 |
| 4 | [1 2 4] | 1 |
| 5 | [1] [5] | 2 |
| 6 | [1 2 3 6] | 1 |
| 7 | [1] [7] | 2 |
| 8 | [1 2 4 8] | 1 |
| 9 | [1] [3] [9] | 3 |
| 10 | [1 2] [5 10] | 2 |
| 11 | [1] [11] | 2 |
| 12 | [1 2 3 4 6 12] | 1 |
| 13 | [1] [13] | 2 |
| 14 | [1 2] [7 14] | 2 |
| 15 | [1] [3 5] [15] | 3 |
| 16 | [1 2 4 8 16] | 1 |
| 17 | [1] [17] | 2 |
| 18 | [1 2 3 6 9 18] | 1 |
| 19 | [1] [19] | 2 |
| 20 | [1 2 4 5 10 20] | 1 |
| 21 | [1] [3] [7] [21] | 4 |
| 22 | [1 2] [11 22] | 2 |
| 23 | [1] [23] | 2 |
| 24 | [1 2 3 4 6 8 12 24] | 1 |
...
A similar structure show the positive integers in the square array A385000. (End)
Cf.
A000203,
A005153,
A027750,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384225,
A384226,
A384928,
A384930,
A384931,
A385000,
A386984,
A386989,
A387030.
A384225
Irregular triangle read by rows: T(n,k) is the number of odd divisors in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1
------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 1; | [1, 2]; | 1 |
| 3 | 1, 1; | [1], [3]; | 2 |
| 4 | 1; | [1, 2, 4]; | 1 |
| 5 | 1, 1; | [1], [5]; | 2 |
| 6 | 2; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 1; | [1], [7]; | 2 |
| 8 | 1; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 1, 1; | [1], [3], [9]; | 3 |
| 10 | 1, 1; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 1; | [1], [11]; | 2 |
| 12 | 2; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 1; | [1], [13]; | 2 |
| 14 | 1, 1; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 2, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 1; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 1; | [1], [17]; | 2 |
| 18 | 3; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 1; | [1], [19]; | 2 |
| 20 | 2; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 1, 1, 1; | [1], [3], [7], [21]; | 4 |
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. Each sublist has only one odd number, so the row 14 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The number of odd numbers in the sublists are [1, 2, 1] respectively, so the row 15 is [1, 2, 1].
For n = 16 the list of divisors of 16 is [1, 2, 4, 8, 16]. There is only one sublist of divisors of 16 whose terms increase by a factor of at most 2, that is the same as the list of divisors of 16, which has five terms and only one odd number, so the row 16 is [1].
Cf.
A000203,
A027750,
A174973 (2-dense numbers),
A280940,
A237271,
A379288,
A384149,
A384222,
A384226,
A384928,
A384930,
A384931,
A385000,
A386984,
A386989,
A387030.
-
A384225row[n_] := Map[Count[#, _?OddQ] &, Split[Divisors[n], #2/# <= 2 &]];
Array[A384225row, 50] (* Paolo Xausa, Jul 08 2025 *)
A384226
Irregular triangle read by rows: T(n,k) is the sum of odd divisors in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 5, 4, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 4, 1, 13, 1, 7, 1, 8, 15, 1, 1, 17, 13, 1, 19, 6, 1, 3, 7, 21, 1, 11, 1, 23, 4, 1, 5, 25, 1, 13, 1, 3, 9, 27, 8, 1, 29, 24, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 12, 35, 13, 1, 37, 1, 19, 1, 3, 13, 39, 6, 1, 41, 32, 1, 43, 1, 11, 1, 32, 45, 1, 23, 1, 47, 4
Offset: 1
--------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
--------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 1; | [1, 2]; | 1 |
| 3 | 1, 3; | [1], [3]; | 2 |
| 4 | 1; | [1, 2, 4]; | 1 |
| 5 | 1, 5; | [1], [5]; | 2 |
| 6 | 4; | [1, 2, 3, 6]; | 1 |
| 7 | 1, 7; | [1], [7]; | 2 |
| 8 | 1; | [1, 2, 4, 8]; | 1 |
| 9 | 1, 3, 9; | [1], [3], [9]; | 3 |
| 10 | 1, 5; | [1, 2], [5, 10]; | 2 |
| 11 | 1, 11; | [1], [11]; | 2 |
| 12 | 4; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 1, 13; | [1], [13]; | 2 |
| 14 | 1, 7; | [1, 2], [7, 14]; | 2 |
| 15 | 1, 8, 15; | [1], [3, 5], [15]; | 3 |
| 16 | 1; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 1, 17; | [1], [17]; | 2 |
| 18 | 13; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 1, 19; | [1], [19]; | 2 |
| 20 | 6; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 1, 3, 7, 21; | [1], [3], [7], [21]; | 4 |
...
For n = 14 the list of divisors of 14 is [1, 2, 7, 14]. There are two sublists of divisors of 14 whose terms increase by a factor of at most 2, they are [1, 2] and [7, 14]. The sums of odd terms in the sublists are [1], [7] respectively, so the row 14 is [1, 7].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three sublists of divisors of 15 whose terms increase by a factor of at most 2, they are [1], [3, 5], [15]. The sums of terms in the sublists are [1, 8, 15] respectively, so the row 15 is [1, 8, 15].
For n = 16 the list of divisors of 16 is [1, 2, 4, 8, 16]. There is only one sublist of divisors of 16 whose terms increase by a factor of at most 2, that is the same as the list of divisors of 16, so the row 16 is [1].
For n = 2350 the list of divisors of 2350 is [1, 2, 5, 10, 25, 47, 50, 94, 235, 470, 1175, 2350]. There are five sublists of divisors of 2350 whose terms increase by a factor of at most 2, they are [1, 2], [5, 10], [25, 47, 50, 94], [235, 470], [1175, 2350]. The sums of odd terms in the sublists are [1, 5, 72, 235, 1175] respectively, so the row 2350 is [1, 5, 72, 235, 1175].
-
A384226row[n_] := Map[Total[Select[#, OddQ]] &, Split[Divisors[n], #2/# <= 2 &]];
Array[A384226row, 50] (* Paolo Xausa, Jul 08 2025 *)
A384930
Irregular triangle read by rows: T(n,k) is the sum of the terms of the (n-k+1)-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 3, 1, 7, 5, 1, 12, 7, 1, 15, 9, 3, 1, 15, 3, 11, 1, 28, 13, 1, 21, 3, 15, 8, 1, 31, 17, 1, 39, 19, 1, 42, 21, 7, 3, 1, 33, 3, 23, 1, 60, 25, 5, 1, 39, 3, 27, 9, 3, 1, 56, 29, 1, 72, 31, 1, 63, 33, 11, 3, 1, 51, 3, 35, 12, 1, 91, 37, 1, 57, 3, 39, 13, 3, 1, 90, 41, 1, 96, 43, 1, 77, 7, 45, 32, 1
Offset: 1
---------------------------------------------------------------------
| n | Row n of | List of divisors of n | Number of |
| | the triangle | [with sublists in brackets] | sublists |
---------------------------------------------------------------------
| 1 | 1; | [1]; | 1 |
| 2 | 3; | [1, 2]; | 1 |
| 3 | 3, 1; | [1], [3]; | 2 |
| 4 | 7; | [1, 2, 4]; | 1 |
| 5 | 5, 1; | [1], [5]; | 2 |
| 6 | 12; | [1, 2, 3, 6]; | 1 |
| 7 | 7, 1; | [1], [7]; | 2 |
| 8 | 15; | [1, 2, 4, 8]; | 1 |
| 9 | 9, 3, 1; | [1], [3], [9]; | 3 |
| 10 | 15 3; | [1, 2], [5, 10]; | 2 |
| 11 | 11, 1; | [1], [11]; | 2 |
| 12 | 28; | [1, 2, 3, 4, 6, 12]; | 1 |
| 13 | 13, 1; | [1], [13]; | 2 |
| 14 | 21, 3; | [1, 2], [7, 14]; | 2 |
| 15 | 15, 8, 1; | [1], [3, 5], [15]; | 3 |
| 16 | 31; | [1, 2, 4, 8, 16]; | 1 |
| 17 | 17, 1; | [1], [17]; | 2 |
| 18 | 39; | [1, 2, 3, 6, 9, 18]; | 1 |
| 19 | 19, 1; | [1], [19]; | 2 |
| 20 | 42; | [1, 2, 4, 5, 10, 20]; | 1 |
| 21 | 21, 7, 3, 1; | [1], [3], [7], [21]; | 4 |
| 22 | 33, 3; | [1, 2], [11, 22]; | 2 |
| 23 | 23, 1; | [1], [23]; | 2 |
| 24 | 60; | [1, 2, 3, 4, 6, 8, 12, 24]; | 1 |
...
A conjectured relationship between a palindromic composition of sigma_0(n) = A000005(n) as n-th row of A384222 and the list of divisors of n as the n-th row of A027750 and a palindromic composition of sigma_1(n) = A000203(n) as the n-th row of A237270 and the diagram called "symmetric representation of sigma(n)" is as shown below with two examples.
.
For n = 10 the conjectured relationship is:
10th row of A384222.......................: [ 2 ], [ 2 ]
10th row of A027750.......................: 1, 2, 5, 10
10th row of A027750 with sublists.........: [ 1, 2 ], [ 5, 10]
10th row of A384149.......................: [ 3 ], [ 15 ]
10th row of this triangle.................: [ 15 ], [ 3 ]
10th row of the virtual sequence 2*A237270: [ 18 ], [ 18 ]
10th row of A237270.......................: [ 9 ], [ 9 ]
.
The symmetric representation of sigma_1(10) in the first quadrant is as follows:
.
_ _ _ _ _ _ 9
|_ _ _ _ _ |
| |_
|_ _|_
| |_ _ 9
|_ _ |
| |
| |
| |
| |
|_|
.
The diagram has two parts (or polygons) of areas [9], [9] respectively, so the 10th row of A237270 is [9], [9] and sigma_1(10) = A000203(10) = 18.
.
For n = 15 the conjectured relationship is:
15th row of A384222.......................: [ 1], [ 2 ], [ 1]
15th row of A027750.......................: 1, 3, 5, 15
15th row of A027750 with sublists.........: [ 1], [ 3, 5], [15]
15th row of A384149.......................: [ 1], [ 8 ], [15]
15th row of this triangle.................: [15], [ 8 ], [ 1]
15th row of the virtual sequence 2*A237270: [16], [ 16 ], [16]
15th row of A237270.......................: [ 8], [ 8 ], [ 8]
.
The symmetric representation of sigma_1(15) in the first quadrant is as follows:
.
_ _ _ _ _ _ _ _ 8
|_ _ _ _ _ _ _ _|
|
|_ _
|_ |_ 8
| |_
|_ _ |
|_|_ _ _ 8
| |
| |
| |
| |
| |
| |
| |
|_|
.
The diagram has three parts (or polygons) of areas [8], [8], [8] respectively, so the 15th row of A237270 is [8], [8], [8] and sigma_1(15) = A000203(15) = 24.
.
For the relationship with Dyck paths, partitions of n into consecutive parts and odd divisors of n see A237593, A235791, A237591 and A379630.
Cf.
A000105,
A174973,
A196020,
A236104,
A235791,
A237270,
A237271,
A237591,
A237593,
A240062,
A245092,
A262626,
A379288,
A379630,
A384222,
A384225,
A384226,
A384227.
A384928
Number of 2-dense sublists of divisors of the n-th triangular number.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 2, 5, 6, 3, 1, 5, 4, 1, 1, 5, 6, 1, 4, 5, 6, 1, 1, 5, 6, 1, 2, 3, 6, 1, 2, 7, 8, 3, 1, 3, 4, 1, 1, 5, 6, 3, 4, 7, 3, 1, 1, 5, 4, 1, 2, 3, 8, 1, 1, 7, 8, 3, 3, 5, 6, 1, 2, 3, 6, 1, 4, 5, 8, 1, 1, 7, 4, 1, 1, 7, 6, 1, 4, 5, 3, 3, 3, 5, 8, 1, 2, 5, 5, 1, 6
Offset: 0
For n = 5 the 5th triangular number is 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(5) = 3.
For n = 12 the 12th triangular number is 78. The list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two 2-dense sublists of divisors of 78, they are [1, 2, 3, 6] and [13, 26, 39, 78], so a(12) = 2. Note that 78 is also the first practical number A005153 not in the sequence of the 2-dense numbers A174973.
Cf.
A000217,
A005153,
A174973 (2-dense numbers),
A237271,
A379288,
A384149,
A384222,
A384225,
A384226,
A384930,
A384931,
A386984 (a bisection),
A386989.
-
A384928[n_] := Length[Split[Divisors[PolygonalNumber[n]], #2 <= 2*# &]];
Array[A384928, 100, 0] (* Paolo Xausa, Aug 14 2025 *)
A384931
Number of 2-dense sublists of divisors of the number of partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 3, 2, 1, 1, 1, 3, 2, 3, 1, 5, 6, 4, 4, 5, 1, 2, 4, 3, 4, 1, 5, 4, 7, 2, 4, 9, 10, 4, 9, 2, 6, 9, 3, 1, 9, 4, 11, 8, 4, 3, 3, 8, 12, 4, 11, 7, 10, 5, 3, 7, 2, 2, 1, 8, 5, 6, 8, 5, 2, 1, 3, 10, 6, 1, 6, 8, 7, 1, 1, 4, 2, 7, 9, 3, 4, 9, 6, 2
Offset: 0
For n = 7 the number of partitions of 7 is A000041(7) = 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(7) = 3.
For n = 19 the number of partitions of 19 is A000041(19) = 490. The list of divisors of 490 is [1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490]. There are four 2-dense sublists of divisors of 490, they are [1, 2], [5, 7, 10, 14], [35, 49, 70, 98], [245, 490], so a(19) = 4.
Showing 1-10 of 17 results.
Comments