cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A276181 Fricke's 37 cases for two-valued modular equations.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 35, 36, 39, 41, 47, 49, 50, 59, 71
Offset: 1

Views

Author

Gheorghe Coserea, Oct 17 2016

Keywords

Crossrefs

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    select(x->(x>1), Vec(select(x->x==0, vector(100, n, A276183(n)), 1)))

Formula

Numbers n>1 such that 0 = A276183(n).

A365138 Genus of the quotient of the modular curve X_1(n) by the Fricke involution.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 3, 1, 2, 3, 5, 2, 6, 4, 6, 5, 10, 4, 12, 8, 10, 10, 11, 8, 20, 13, 15, 12, 24, 12, 28, 17, 20, 22, 33, 18, 34, 23, 31, 27, 45, 25, 39, 29, 42, 39, 56, 28, 62, 44, 47, 46, 59, 39, 77, 51, 65, 48, 85, 48, 93, 66, 71, 67, 89, 60, 109
Offset: 1

Views

Author

David Jao, Aug 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A000003[n_] :=
     Length[Select[
       Flatten[#, 1] &@
        Table[{i, j, (j^2 + 4 n)/(4 i)}, {i, Sqrt[4 n/3]}, {j, 1 - i, i}],
        Mod[#3, 1] == 0 && #3 >= # &&
           GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]];
    A001617[n_] :=
      If[n < 1, 0,
       1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
          Divisors@n}] -
        Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
        Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
    A029937[n_] =
      If[n < 5, 0,
       1 + Sum[d^2*MoebiusMu[n/d]/24 - EulerPhi[d]*EulerPhi[n/d]/4, {d,
          Divisors[n]}]];
    A276183[n_] :=
     If[0 <= n <= 4,
      0, (A001617[n] + 1)/2 -
       If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]]*A000003[n]/12];
    A365138[n_] := (A029937[n] - A001617[n])/2 + A276183[n]

Formula

a(n) = (A029937(n) - A001617(n))/2 + A276183(n).

A079029 Least k such that the class number of quadratic order of discriminant D=-4k equals p, where p runs through the primes.

Original entry on oeis.org

5, 11, 47, 71, 167, 191, 383, 311, 647, 887, 719, 1487, 1151, 1847, 3023, 2711, 2399, 3863, 3719, 5471, 2999, 4391, 3911, 6311, 5519, 5879, 13799, 8231, 5711, 8039, 19463, 12671, 15287, 9239, 17783, 22727, 25847, 40039, 15671, 14159, 17519, 14759, 22271, 26591
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2003

Keywords

Crossrefs

Cf. A000003.

Programs

  • PARI
    a(n) = {my(k=1, p=prime(n)); while(abs(p-qfbclassno(-4*k))>0,k++); k; }

Extensions

More terms from Jinyuan Wang, Apr 03 2020

A079030 Least k such that the class number of quadratic order of discriminant D=-4k equals n.

Original entry on oeis.org

1, 5, 11, 14, 47, 26, 71, 41, 59, 74, 167, 89, 191, 101, 131, 146, 383, 236, 311, 194, 251, 269, 647, 299, 479, 314, 419, 341, 887, 461, 719, 446, 659, 614, 1031, 626, 1487, 1199, 1019, 689, 1151, 794, 1847, 854, 971, 941, 3023, 1106, 1511, 1109, 1091, 1256, 2711
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2003

Keywords

Crossrefs

Cf. A000003.

Programs

  • PARI
    a(n)=if(n<0,0,k=1; while(abs(n-qfbclassno(-4*k))>0,k++); k)

A250219 Number of times that n appears in n-th OEIS sequence (A_n), or -1 if n appears infinitely many times.

Original entry on oeis.org

-1, -1, 8, 0, -1, 4, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

Does a(19) equal -1? (See A000019.)

Examples

			From _Jianing Song_, Sep 05 2018: (Start)
a(3) = 8 since A000003(k) = 3 for k = 11, 19, 23, 27, 31, 43, 67 and 163.
a(6) = 4 since A000006(k) = 6 for k = 12, 13, 14 and 15.
a(10) = 2 since A000010(k) = 10 for k = 11 and 22. (End)
		

Crossrefs

Extensions

a(3) corrected by Jianing Song, Sep 05 2018

A276184 Numbers n such that A276183(n) = 1.

Original entry on oeis.org

22, 28, 30, 33, 34, 37, 38, 40, 43, 44, 45, 48, 51, 53, 54, 55, 56, 61, 63, 64, 65, 75, 79, 81, 83, 89, 95, 101, 119, 131
Offset: 1

Views

Author

Gheorghe Coserea, Oct 22 2016

Keywords

Crossrefs

Cf. A276183.

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    Vec(select(x->x==1, vector(5000, n, A276183(n)), 1))

A276185 Numbers n such that A276183(n) = 2.

Original entry on oeis.org

42, 46, 52, 57, 62, 67, 68, 69, 72, 73, 74, 77, 80, 87, 91, 98, 103, 107, 111, 121, 125, 143, 167, 191
Offset: 1

Views

Author

Gheorghe Coserea, Oct 22 2016

Keywords

Crossrefs

Cf. A276183.

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    Vec(select(x->x==2, vector(500, n, A276183(n)), 1))

A276186 Numbers n such that A276183(n) = 3.

Original entry on oeis.org

58, 60, 66, 76, 85, 86, 96, 97, 99, 100, 104, 109, 113, 127, 128, 139, 149, 151, 169, 179, 239
Offset: 1

Views

Author

Gheorghe Coserea, Oct 22 2016

Keywords

Crossrefs

Cf. A276183.

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    Vec(select(x->x==3, vector(500, n, A276183(n)), 1))
Previous Showing 41-48 of 48 results.