cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 96 results. Next

A001371 Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is allowed.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 8, 16, 24, 42, 69, 124, 208, 378, 668, 1214, 2220, 4110, 7630, 14308, 26931, 50944, 96782, 184408, 352450, 675180, 1296477, 2493680, 4805388, 9272778, 17919558, 34669600, 67156800, 130215996, 252741255, 490984464, 954629662, 1857545298
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence, in two entries, N0045 and N0285).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A276550.

Programs

  • Maple
    with(numtheory); A001371 := proc(n) local s,d; if n = 0 then RETURN(1) else s := 0; for d in divisors(n) do s := s+mobius(d)*A000029(n/d); od; RETURN(s); fi; end;
  • Mathematica
    a29[n_] := a29[n] = (s = If[OddQ[n], 2^((n-1)/2) , 2^(n/2 - 2) + 2^(n/2 - 1)]; a29[0] = 1; Do[s = s + EulerPhi[d]*2^(n/d)/(2*n), {d, Divisors[n]}]; s); a[n_] := Sum[ MoebiusMu[d]*a29[n/d], {d, Divisors[n]}]; a[0] = 1; Table[ a[n], {n, 0, 34}] (* Jean-François Alcover, Oct 04 2011 *)
    mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; ReplacePart[CoefficientList[Series[gf[x,2],{x,0,mx}],x],1->1] (* Herbert Kociemba, Nov 28 2016 *)
  • Python
    from sympy import divisors, totient, mobius
    def a000029(n):
        return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
    def a(n):
        return 1 if n<1 else sum(mobius(d)*a000029(n//d) for d in divisors(n))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 23 2017

Formula

a(n) = Sum_{ d divides n } mu(d)*A000029(n/d).
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, for n>0, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)

Extensions

More terms from Christian G. Bower
Entry revised by N. J. A. Sloane, Jun 10 2012

A032164 Number of aperiodic necklaces of n beads of 6 colors; dimensions of free Lie algebras.

Original entry on oeis.org

1, 6, 15, 70, 315, 1554, 7735, 39990, 209790, 1119720, 6045837, 32981550, 181394535, 1004668770, 5597420295, 31345665106, 176319264240, 995685849690, 5642219252460, 32071565263710, 182807918979777
Offset: 0

Views

Author

Keywords

Comments

From Petros Hadjicostas, Aug 31 2018: (Start)
For each m >= 1, the CHK[m] transform of sequence (c(n): n>=1) has generating function B_m(x) = (1/m)*Sum_{d|m} mu(d)*C(x^d)^{m/d}, where C(x) = Sum_{n>=1} c(n)*x^n is the g.f. of (c(n): n >= 1). As a result, the CHK transform of sequence (c(n): n >= 1) has generating function B(x) = Sum_{m >= 1} B_m(x) = -Sum_{n >= 1} (mu(n)/n)*log(1 - C(x^n)).
For n, k >= 1, let a_k(n) = number of aperiodic necklaces of n beads of k colors. We then have (a_k(n): n >= 1) = CHK(c_k(n): n >= 1), where c_k(1) = k and c_k(n) = 0 for all n >= 2, with g.f. C_k(x) = Sum_{n >= 1} c_k(n)*x^n = k*x. The g.f. of (a_k(n): n >= 1) is A_k(x) = Sum_{n >= 1} a_k(n)*x^n = -Sum_{n >= 1} (mu(n)/n)*log(1-k*x^n), which is Herbert Kociemba's general formula below (except for the initial term a_k(0) = 1).
For the current sequence, k = 6.
(End)

References

  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Column 6 of A074650.
Cf. A001037, A001692 (5 colors).
Cf. A054721.

Programs

  • Mathematica
    f[d_] := MoebiusMu[d]*6^(n/d)/n; a[n_] := Total[f /@ Divisors[n]]; a[0] = 1; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 07 2011 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,6],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, moebius(d)*6^(n/d)/n)); \\ Michel Marcus, Dec 01 2015

Formula

"CHK" (necklace, identity, unlabeled) transform of 6, 0, 0, 0...
a(n) = Sum_{d|n} mu(d)*6^(n/d)/n, for n>0.
G.f.: k=6, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016

A072605 Number of necklaces with n beads over an n-ary alphabet {a1,a2,...,an} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 0, where #(w,x) counts the letters x in word w.

Original entry on oeis.org

1, 1, 2, 4, 13, 50, 270, 1641, 11945, 96784, 887982, 8939051, 99298354, 1195617443, 15619182139, 219049941201, 3293800835940, 52746930894774, 897802366250126, 16167544246362567, 307372573011579188, 6148811682561390279, 129164845357784003661
Offset: 0

Views

Author

Wouter Meeussen, Aug 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    neck[li:{__Integer}] := Module[{n, d}, n=Plus@@li; d=n-First[li]; Fold[ #1+(EulerPhi[ #2]*(n/#2)!)/Times@@((li/#2)!)&, 0, Divisors[GCD@@li]]/n]; Table[ Plus@@(neck /@ IntegerPartitions[n]), {n, 24}]
  • PARI
    a(n)={if(n==0, 1, my(p=prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n))); sumdiv(n, d, eulerphi(n/d)*d!*polcoeff(p,d))/n)} \\ Andrew Howroyd, Dec 20 2017

Formula

a(n) = (1/n) * Sum_{d|n} phi(n/d) * A005651(d) for n > 0. - Andrew Howroyd, Sep 25 2017
See Mathematica line.
a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264818011615... . - Vaclav Kotesovec, Aug 27 2015

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 23 2015
Name changed by Andrew Howroyd, Sep 25 2017

A123045 Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition).

Original entry on oeis.org

0, 2, 6, 12, 39, 104, 366, 1172, 4179, 14572, 52740, 190652, 700274, 2581112, 9591666, 35791472, 134236179, 505290272, 1908947406, 7233629132, 27488079132, 104715393912, 399823554006, 1529755308212, 5864066561554, 22517998136936, 86607703209516
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2006

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory):
    V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611
    H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's
    A123045:=n-> `if`(n=0,0, (V(n)+H(n))/(2*n));
  • Mathematica
    V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1];
    H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0];
    a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)];
    a /@ Range[0, 26] (* Jean-François Alcover, Mar 20 2020, from Maple *)

Formula

See Maple program.

A166316 Lexicographically largest binary de Bruijn sequences, B(2,n).

Original entry on oeis.org

2, 12, 232, 63056, 4221224224, 18295693635288736320, 338921575014037816709507133224870496384, 115563265193225535967792084153637585725267224878335215248443107599191173632256
Offset: 1

Views

Author

Darse Billings, Oct 11 2009

Keywords

Comments

Term a(n) is a cyclical bit string of length 2^n, with every possible substring of length n occurring exactly once.
Mathworld says: "Every de Bruijn sequence corresponds to an Eulerian cycle on a de Bruijn graph. Surprisingly, it turns out that the lexicographic sequence of Lyndon words of lengths divisible by n gives the lexicographically earliest de Bruijn sequence (Ruskey). de Bruijn sequences can be generated by feedback shift registers (Golomb 1967; Ronse 1984; Skiena 1990, p. 196)."
Terms grow like Theta(2^(2^n)). - Darse Billings, Oct 18 2009

Examples

			For n = 3, the last de Bruijn sequence, a(n) = B(2,3), is '11101000' = 232.
		

Crossrefs

Cf. A166315 (lexicographically earliest de Bruijn sequences (binary complements)).

Extensions

a(6)-a(8) from Darse Billings, Oct 18 2009

A283846 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

2, 6, 10, 31, 68, 226, 650, 2259, 7542, 27036, 96350, 352786, 1294652, 4806366, 17912120, 67160083, 252710672, 954641186, 3617076710, 13744708060, 52358745532, 199914446106, 764881848410, 2932043941394, 11259015845684, 43303894193076, 166800053312630
Offset: 1

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Comments

Counts A032275 up to paired color permutation (equivalent to full color permutation on the 2-tuples of two subcolors, e.g., convert quaternary beads 0 1 2 3 to dibit beads 00 01 10 11). - Travis Scott, Jan 09 2023

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:=  proc(m) uses numtheory;
      if m::even then 1/(4*m)*add(phi(d)*4^(m/d)*`if`(d::even,2,1), d = divisors(m))
    + 3*2^(m-2)
      else
    1/(4*m)*add(phi(d)*4^(m/d),d=divisors(m))+2^(m-1)
      fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 21 2018
  • Mathematica
    f[m_] := If[EvenQ[m], 1/(4m)*Sum[EulerPhi[d]*4^(m/d)*If[EvenQ[d], 2, 1], {d, Divisors[m]}]+ 3*2^(m-2), 1/(4m)*Sum[EulerPhi[d]*4^(m/d), {d, Divisors[m]}] + 2^(m-1)];
    f /@ Range[1, 25] (* Jean-François Alcover, Feb 26 2019, after Robert Israel *)

Formula

From Robert Israel, Aug 21 2018 after Fujita (2017), Eq. (99)(set n=2, m=n): (Start)
if n is even, a(n) = (4*n)^(-1)*(Sum_{d|n} phi(d)*4^(n/d) + Sum_{d|n, d even} phi(d)*4^(n/d)) + 3*2^(n-2).
if n is odd, a(n) = 2^(n-1) + (4*n)^(-1)*Sum_{d|n} phi(d)*4^(n/d). (End)

Extensions

a(1)-a(2) prepended by Travis Scott, Jan 09 2023

A283847 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

2, 8, 36, 140, 522, 1920, 7030, 25704, 94302, 347488, 1286460, 4785300, 17879352, 67076096, 252579600, 954306220, 3616552422, 13743371072, 52356648380, 199909107900, 764873459802, 2932022620160, 11258982291252, 43303809016440, 166799919094902, 643371241120928
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:= proc(n) uses numtheory;
      if n::even then (4*n)^(-1)*add(phi(d)*4^(n/d), d = select(type,divisors(n),odd)) - 2^(n-1)
      else (4*n)^(-1)*add(phi(d)*4^(n/d), d = divisors(n)) - 2^(n-1)
      fi
    end proc:
    map(f, [$3..50]); # Robert Israel, Aug 23 2018
  • Mathematica
    a[n_] := If[EvenQ[n], (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], OddQ]}] - 2^(n-1), (4n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Divisors[n]}] - 2^(n-1)];
    Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)

Formula

a(n) = (4*n)^(-1)*(Sum_{d|n, d odd} phi(d)*4^(n/d)) - 2^(n-1). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (100) (set n=2, m=n)

A283848 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.

Original entry on oeis.org

8, 23, 32, 86, 128, 339, 512, 1332, 2048, 5298, 8192, 21066, 32768, 83987, 131072, 334966, 524288, 1336988, 2097152, 5338206, 8388608, 21321234, 33554432, 85176636, 134217728, 340338398, 536870912, 1360073016, 2147483648, 5435820051, 8589934592, 21727481616, 34359738368, 86853790498, 137438953472
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2017

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    f:= proc(n) uses numtheory;
      if n::even then (2*n)^(-1)*add(phi(d)*4^(n/d),d=select(type,divisors(n),even))+5*2^(n-2)
      else 2^n
      fi
    end proc:
    map(f, [$1..40]); # Robert Israel, Aug 23 2018
  • Mathematica
    a[n_] := If[EvenQ[n], (2n)^(-1) Sum[EulerPhi[d] 4^(n/d), {d, Select[ Divisors[n], EvenQ]}] + 5*2^(n-2), 2^n];
    Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Mar 23 2019, after Robert Israel *)
  • PARI
    a(n) = if (n%2, 2^n, (2*n)^(-1)*sumdiv(n, d, if (!(d%2), eulerphi(d)*4^(n/d))) + 5*2^(n-2)); \\ Michel Marcus, Mar 23 2019

Formula

If n is even, a(n) = (2*n)^(-1)*Sum_{d|n, d even} phi(d)*4^(n/d) + 5*2^(n-2). - Robert Israel, Aug 23 2018 after Fujita (2017), Eq. (101) (set n=2, m=n).
If n is odd, a(n) = 2^n. For the even bisection see A284711.

Extensions

Edited and more terms by Robert Israel, Aug 23 2018

A007148 Number of self-complementary 2-colored bracelets (turnover necklaces) with 2n beads.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 37, 74, 143, 284, 559, 1114, 2206, 4394, 8740, 17418, 34696, 69194, 137971, 275280, 549258, 1096286, 2188333, 4369162, 8724154, 17422652, 34797199, 69505908, 138845926, 277383872, 554189329, 1107297290, 2212558942
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Different from, but easily confused with, A045690 and A093371.

Programs

  • Maple
    # see A245558
    L := proc(n,k)
        local a,j ;
        a := 0 ;
        for j in numtheory[divisors](igcd(n,k)) do
            a := a+numtheory[mobius](j)*binomial(n/j,k/j) ;
        end do:
        a/n ;
    end proc:
    A007148 := proc(n)
        local a,k,l;
        a := 0 ;
        for k from 1 to n do
            for l in numtheory[divisors](igcd(n,k)) do
                a := a+L(n/l,k/l)*ceil(k/2/l) ;
            end do:
        end do:
        a;
    end proc:
    seq(A007148(n),n=1..20) ; # R. J. Mathar, Jul 23 2017
  • Mathematica
    a[n_] := (1/2)*(2^(n-1) + Total[ EulerPhi[2*#]*2^(n/#) &  /@ Divisors[n]]/(2*n)); Table[ a[n], {n, 1, 33}] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    a(n)= (1/2) *(2^(n-1)+sumdiv(n,k,eulerphi(2*k)*2^(n/k))/(2*n))
    
  • Python
    from sympy import divisors, totient
    def a(n):
        if n==1: return 1
        return 2**(n - 2) + sum(totient(2*d)*2**(n//d) for d in divisors(n))//(4*n)
    print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Jul 24 2017

Formula

a(n) = 2^(n-2) + (1/(4n)) * Sum_{d|n} phi(2d)*2^(n/d). - N. J. A. Sloane, Sep 25 2012
a(n) = (1/2)*(A000079(n-1) + A000013(n)).

Extensions

Description corrected by Christian G. Bower

A032168 Number of aperiodic necklaces of n beads of 2 colors, 10 of them black.

Original entry on oeis.org

1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225, 16796, 29372, 49742, 81686, 130750, 204248, 312455, 468611, 690690, 1001400, 1430715, 2015871, 2804880, 3856528, 5245125, 7060508, 9414328, 12440056, 16301164
Offset: 11

Views

Author

Keywords

Comments

From Petros Hadjicostas, Aug 24 2018: (Start)
It can be proved that the CHK[k] transform of sequence (c(n): n>=1) has generating function A_k(x) = (1/k)*Sum_{d|k} mu(d)*C(x^d)^{k/d}, where C(x) = Sum_{n>=1} c(n)*x^n is the g.f. of (c(n): n>=1).
When c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (x^k/k)*Sum_{d|k} mu(d)*(1-x^d)^{-k/d}, which is Herbert Kociemba's general formula (in the Mathematica code) for a_k(n), the number of aperiodic necklaces of n beads of 2 colors with k of them black and n-k of them white.
Using Taylor expansions, we can easily prove that a_k(n) = (1/k)*Sum_{d|gcd(n,k)} mu(d)*binomial(n/d - 1, k/d - 1) = (1/n)*Sum_{d|gcd(n,k)} mu(d)*binomial(n/d, k/d).
For this sequence k = 10, and thus we get the formulae below.
(End)

Examples

			From _Petros Hadjicostas_, Aug 24 2018: (Start)
According to Bower's theory in the web link above, we have exactly k = 10 boxes of different sizes and colors that are placed on a circle. Two boxes are considered identical if they have the same number of balls (i.e., the same size) and the same color. Here c(n) = 1 for all n >= 1, which means all k boxes have at least one ball and only one color. Two configurations of k boxes on the circle with n balls in total are considered equivalent iff one can be obtained from the other by rotation. Since we are dealing with the CHK[k] transform, the configuration of k boxes on the circle must be aperiodic. (This is the meaning of H when we are dealing with order C, i.e., with necklaces. The letter K means that the balls are unlabeled.)
Here, a(n) equals the number of non-equivalent aperiodic configurations of k boxes on the circle (necklaces with k boxes) such that (i) the total number of balls is n, (ii) each box has at least one ball, and (iii) all balls are unlabeled.
Thus, a(n) is the number of unmarked aperiodic cyclic compositions of n with k = 10 positive parts. (The word "umarked" means that two cyclic compositions are equivalent if one can be obtained from the other by rotation.)
Let b_1,b_2,...,b_k be such a cyclic aperiodic composition of n. By definition, b_i >= 1 for i=1,...,k. On a circle, start with a black ball, and place b_1 - 1 white balls to the right of the black ball; then place one black ball followed by b_2 - 1 white balls; continue this until you have a black ball followed by b_k - 1 white balls on the circle. The last white ball (if any) is followed by the first black ball. (If b_k = 1, then the last black ball is followed by the first black ball.) If the position of the first black ball is unmarked, then we may freely rotate the configuration of black and white balls on the circle. We thus get an aperiodic necklace with n balls (or beads) of 2 colors, k = 10 of which are black and n - k = n - 10 of which are white. (We assume of course that n >= 10. Since each necklace is aperiodic, we must have n >= 11 since the configuration b_i = 1 for all i is not allowed.)
The above argument shows that, for n >= k+1 = 11, a(n) is the number of aperiodic necklaces of n beads of 2 colors such that k = 10 of them are black and the rest are white.
For n = 11, a(11) = 1, because we have only one unmarked aperiodic cyclic composition of n = 11 with k = 10 parts and only one aperiodic necklace with 11 beads such that k = 10 of them are black and n-k = 1 of them is white: 2111111111 <-> BWBBBBBBBBB.
For n = 12, a(12) = 5, because we have the following aperiodic cyclic compositions and corresponding aperiodic necklaces:
(1) 3111111111 <-> BWWBBBBBBBBB
(2) 2211111111 <-> BWBWBBBBBBBB
(3) 2121111111 <-> BWBBWBBBBBBB
(4) 2112111111 <-> BWBBBWBBBBBB
(5) 2111211111 <-> BWBBBBWBBBBB
(The configuration 2111121111 <-> BWBBBBBWBBBB is excluded because, on a circle, it has period 2.)
(End)
		

Programs

  • Mathematica
    (* The g.f. given above is the special case k=10 for *)
    gf[x_,k_]:=x^k/k Plus@@(MoebiusMu[#](1-x^#)^(-(k/#))&/@Divisors[k])
    (* which gives the  g.f. for the number of aperiodic necklaces of n beads of 2 colors, k of them black. *) (* Herbert Kociemba, Oct 23 2016 *)
    CoefficientList[Series[(1/x)*(1/(1 - x)^10 - 1/(1 - x^2)^5 - 1/(1 - x^5)^2 + 1/(1 - x^10))/10,{x,0,50}],x] (* Stefano Spezia, Aug 31 2018 *)

Formula

"CHK[ 10 ]" (necklace, identity, unlabeled, 10 parts) transform of 1, 1, 1, 1, ...
G.f.: x^10*(1/(1-x)^10 - 1/(1-x^2)^5 - 1/(1-x^5)^2 + 1/(1-x^10))/10. - Herbert Kociemba, Oct 23 2016
a(n) = (1/10)*(binomial(n-1, 9) - I(2|n)*binomial(floor(n/2) - 1, 4) - I(5|n)*(floor(n/5) - 1) + I(10|n)), where I(a|b) = 1 if integer a divides integer b, and 0 otherwise. - Petros Hadjicostas, Aug 25 2018
Previous Showing 31-40 of 96 results. Next