cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 1497 results. Next

A338736 a(n) = L(L(n)) mod n, where L = Lucas numbers = A000032.

Original entry on oeis.org

0, 0, 1, 1, 4, 0, 3, 7, 7, 4, 10, 3, 9, 10, 7, 15, 12, 0, 10, 9, 7, 4, 22, 3, 1, 4, 7, 1, 4, 18, 30, 31, 7, 4, 29, 15, 1, 34, 34, 39, 35, 24, 29, 29, 7, 4, 46, 3, 1, 4, 7, 29, 29, 0, 21, 55, 7, 54, 35, 3, 45, 4, 7, 63, 64, 36, 2, 29, 7, 4, 6, 3, 43, 4, 7, 29
Offset: 1

Views

Author

Alois P. Heinz, Nov 05 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; (r.<<2, 1>>)[1$2]
        end:
    a:= n-> (f-> b(f, n) mod n)(b(n)):
    seq(a(n), n=1..80);

Formula

a(n) = A005371(n) mod n.

A338889 a(n) = L(L(L(n))) mod L(L(n)), where L = Lucas numbers = A000032.

Original entry on oeis.org

1, 0, 3, 1, 1, 1, 0, 1, 1, 29, 7, 1, 19679776435706023589554718882448088434898811874077010905231927243854, 1, 7
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2020

Keywords

Comments

a(21) = 2992285359..7163788371 has 5090 decimal digits.

Crossrefs

Programs

  • Maple
    b:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; (r.<<2, 1>>)[1$2]
        end:
    a:= n-> (h-> b(h$2) mod h)(b(b(n))):
    seq(a(n), n=0..15);

Formula

a(n) = A262361(n) mod A005371(n).

A339517 Odd composite integers m such that A000032(2*m-J(m,5)) == J(m,5) (mod m), where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

323, 377, 1001, 1183, 1729, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 8841, 10877, 11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 26011, 27323, 30889, 34561, 34943, 35207, 39203, 40501, 41041
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=1, D=5 and k=2, while V(m) recovers A000032(m) (Lucas numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A000032, A071904, A339125 (a=1, b=-1, k=1).
Cf. A339518 (a=3, b=-1), A339519 (a=5, b=-1), A339520 (a=7, b=-1).

Programs

  • Mathematica
    Select[Range[3, 45000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 5]] - JacobiSymbol[#, 5], #] &]

A347861 a(n) = A000032(n)*A000032(n+1) mod A000032(n+2).

Original entry on oeis.org

2, 3, 5, 6, 5, 24, 5, 71, 5, 194, 5, 516, 5, 1359, 5, 3566, 5, 9344, 5, 24471, 5, 64074, 5, 167756, 5, 439199, 5, 1149846, 5, 3010344, 5, 7881191, 5, 20633234, 5, 54018516, 5, 141422319, 5, 370248446, 5, 969323024, 5, 2537720631, 5, 6643838874, 5, 17393795996, 5, 45537549119, 5, 119218851366, 5
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, Jan 23 2022

Keywords

Comments

The analogous sequence for Fibonacci numbers instead of Lucas numbers is A333599.

Examples

			a(3) = A000032(3)*A000032(4) mod A000032(5) = 4*7 mod 11 = 6.
		

Crossrefs

Programs

  • Maple
    L:= n -> combinat:-fibonacci(n-1)+combinat:-fibonacci(n+1):
    f:= n -> L(n)*L(n+1) mod L(n+2):
    map(f, [$0..40]);
  • Mathematica
    With[{L = LucasL}, Table[Mod[L[n]*L[n + 1], L[n + 2]], {n, 0, 50}]] (* Amiram Eldar, Jan 24 2022 *)
  • PARI
    L(n) = fibonacci(n+1)+fibonacci(n-1);
    a(n) = L(n)*L(n+1) % L(n+2); \\ Michel Marcus, Jan 24 2022

Formula

G.f.: 4*x - 3 - (x + 3)/(2*(x^2 + x - 1)) - (x - 3)/(2*(x^2 - x - 1)) + 5/(x + 1).
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) - a(n-4) - a(n-5) for n >= 7.
a(n) = 5 for even n >= 2.
a(n) = A000032(n+2)-5 for odd n >= 3.

A350902 a(n) = (5*F(n)*F(n-1)*F(2*n-1)*a(n-1) + F(n-1)*L(n)*a(n-2))/(L(n-1)*F(n)), with a(0) = 1, a(1) = 0, where F(n) = A000045(n) and L(n) = A000032(n).

Original entry on oeis.org

1, 0, 3, 25, 816, 59475, 12031005, 6229446000, 8517168411895, 30387269735449725, 284188952072106783648, 6954889250543118311091775, 445684855849546942072130113089, 74767094861864103592878982016253600, 32838249084789127737424410920015676309123
Offset: 0

Views

Author

Amiram Eldar, Jan 21 2022

Keywords

Comments

Although the recurrence relation involves fractions, all the terms are integers.
The sequence of fractions b(n) = A350903(n)/A350904(n) is defined by the same recurrence relation, but with the initial terms 0 and 1 instead of 1 and 0.
André-Jeannin (1991) used this sequence and the sequence b(n) to prove that s = Sum_{n>=1} 1/F(n) (A079586) is an irrational number.
The sequence of ratios r(n) = b(n)/a(n) rapidly converges to s. For example, abs(r(16)-s) < 10^(-100) and abs(r(49)-s) < 10^(-1000).

Crossrefs

Programs

  • Mathematica
    With[{F = Fibonacci, L = LucasL}, a[0] = 1; a[1] = 0; a[n_] := a[n] = (5*F[n]*F[n - 1]*F[2*n - 1]*a[n - 1] + F[n - 1]*L[n]*a[n - 2])/(L[n - 1]*F[n]); Array[a, 15, 0]]

Formula

Limit_{n->oo} A350903(n)/(A350904(n)*a(n)) = A079586 (André-Jeannin, 1991).

A350903 Numerators of the sequence of fractions defined by u(n) = ((5*F(n)*F(n-1)*F(2*n-1)*u(n-1) + F(n-1)*L(n)*u(n-2))/(L(n-1)*F(n))), with u(0) = 0 and u(1) = 1, where F(n) = A000045(n) and L(n) = A000032(n).

Original entry on oeis.org

0, 1, 10, 84, 8225, 999146, 161691205, 4081394133187, 801267937794945, 451272063930179690869, 955797228958312695758495, 12869303093903467063139191673469, 141131682569461636438244407470674215, 5214528077594695050414454970728001934806021
Offset: 0

Views

Author

Amiram Eldar, Jan 21 2022

Keywords

Comments

See A350902 for details.

Examples

			The sequence of fractions begins with 0, 1, 10, 84, 8225/3, 999146/5, 161691205/4, 4081394133187/195, 801267937794945/28, 451272063930179690869/4420, ...
		

Crossrefs

Cf. A000032, A000045, A079586, A350902, A350904 (denominators).

Programs

  • Mathematica
    With[{F = Fibonacci, L = LucasL}, u[0] = 0; u[1] = 1; u[n_] := u[n] = (5*F[n]*F[n - 1]*F[2*n - 1]*u[n - 1] + F[n - 1]*L[n]*u[n - 2])/(L[n - 1]*F[n]); Numerator @ Array[u, 15, 0]]

A350904 Denominators of the sequence of fractions defined by u(n) = ((5*F(n)*F(n-1)*F(2*n-1)*u(n-1) + F(n-1)*L(n)*u(n-2))/(L(n-1)*F(n))), with u(0) = 0 and u(1) = 1, where F(n) = A000045(n) and L(n) = A000032(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 4, 195, 28, 4420, 1001, 550732, 94248, 20757737, 150585864, 596098336680, 84878386593, 17090110926980520, 1216260982575912, 13296541287045886485, 484071647034823848, 3418959485072391296664264, 19630886922468003512297
Offset: 0

Views

Author

Amiram Eldar, Jan 21 2022

Keywords

Comments

See A350902 for details.

Crossrefs

Cf. A000032, A000045, A079586, A350902, A350903 (numerators).

Programs

  • Mathematica
    With[{F = Fibonacci, L = LucasL}, u[0] = 0; u[1] = 1; u[n_] := u[n] = (5*F[n]*F[n - 1]*F[2*n - 1]*u[n - 1] + F[n - 1]*L[n]*u[n - 2])/(L[n - 1]*F[n]); Denominator @ Array[u, 25, 0]]

A355018 Partial sums of F(1) - L(1) + F(2) - L(2) + F(3) - L(3) + ..., where F = A000045 and L = A000032.

Original entry on oeis.org

1, 0, 1, -2, 0, -4, -1, -8, -3, -14, -6, -24, -11, -40, -19, -66, -32, -108, -53, -176, -87, -286, -142, -464, -231, -752, -375, -1218, -608, -1972, -985, -3192, -1595, -5166, -2582, -8360, -4179, -13528, -6763, -21890, -10944, -35420, -17709, -57312, -28655
Offset: 0

Views

Author

Clark Kimberling, Jun 16 2022

Keywords

Comments

The closely related partial sums of L(1) - F(1) + L(2) - F(2) + L(3) - F(3) + .... are given by A355019.

Examples

			a(0) = 1
a(1) = 1 - 1 = 0
a(2) = 1 - 1 + 1 = 1
a(3) = 1 - 1 + 1 - 3 = -2.
		

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [2 - (((n+1) mod 2)*F(Floor((n+2)/2)) + 2*(n mod 2)*F(Floor((n+3)/2))) : n in [0..60]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    f[n_] := Fibonacci[n]; g[n_] := LucasL[n];
    f1[n_] := If[OddQ[n], 2 - 2 f[(n + 3)/2], 2 - f[(n + 2)/2]]
    f2 = Table[f1[n], {n, 0, 20}]  (* this sequence *)
    g1[n_] := If[OddQ[n], -2 + 2 f[(n + 3)/2], -2 + f[(n + 8)/2]]
    g2 = Table[g1[n], {n, 0, 20}]  (* A355019 *)
    LinearRecurrence[{1,1,-1,1,-1}, {1,0,1,-2,0}, 61] (* G. C. Greubel, Mar 17 2024 *)
  • SageMath
    f=fibonacci; [2 - (((n+1)%2)*f(((n+2)//2)) +2*(n%2)*f((n+3)//2)) for n in range(61)] # G. C. Greubel, Mar 17 2024

Formula

a(n) = 2 - 2*F((n+3)/2) if n is odd, a(n) = 2 - F((n+2)/2) if n is even, where F = A000045 (Fibonacci numbers).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) for n >= 5.
G.f.: (1 - x - 2*x^3)/((1 - x)*(1 - x^2 - x^4)).
From G. C. Greubel, Mar 17 2024: (Start)
a(n) = (1/2)*Sum_{j=0..n} ( (1+(-1)^j)*Fibonacci(floor((j+3)/2)) - (1 - (-1)^j)*Lucas(floor((j+1)/2)) ).
a(n) = 2 - (1/2)*( (1+(-1)^n)*Fibonacci(floor((n+2)/2)) + 2*(1-(-1)^n)* Fibonacci(floor((n+3)/2)) ). (End)

A355019 Partial sums of L(1) - F(1) + L(2) - F(2) + L(3) - F(3) + ..., where L = A000032 and F = A000045.

Original entry on oeis.org

1, 0, 3, 2, 6, 4, 11, 8, 19, 14, 32, 24, 53, 40, 87, 66, 142, 108, 231, 176, 375, 286, 608, 464, 985, 752, 1595, 1218, 2582, 1972, 4179, 3192, 6763, 5166, 10944, 8360, 17709, 13528, 28655, 21890, 46366, 35420, 75023, 57312, 121391, 92734, 196416, 150048
Offset: 0

Views

Author

Clark Kimberling, Jun 16 2022

Keywords

Comments

The closely related partial sums of F(1) - L(1) + F(2) - L(2) + F(3) - L(3) + ... are given by A355018.

Examples

			a(0) = 1
a(1) = 1 - 1 = 0
a(2) = 1 - 1 + 3 = 3
a(3) = 1 - 1 + 3  - 1 = 2.
		

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [(((n+1) mod 2)*F(Floor(n/2)+4) + 2*(n mod 2)*F(Floor((n+3)/2))) - 2: n in [0..60]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    f[n_] := Fibonacci[n]; g[n_] := LucasL[n];
    f1[n_] := If[OddQ[n], 2 - 2 f[(n + 3)/2], 2 - f[(n + 2)/2]]
    f2 = Table[f1[n], {n, 0, 20}]  (* A355018 *)
    g1[n_] := If[OddQ[n], -2 + 2 f[(n + 3)/2], -2 + f[(n + 8)/2]]
    g2 = Table[g1[n], {n, 0, 20}]  (* this sequence *)
    LinearRecurrence[{1,1,-1,1,-1}, {1,0,3,2,6}, 61] (* G. C. Greubel, Mar 17 2024 *)
  • SageMath
    f=fibonacci; [(((n+1)%2)*f((n//2)+4) +2*(n%2)*f((n+3)//2)) -2 for n in range(61)] # G. C. Greubel, Mar 17 2024

Formula

a(n) = -2 + 2 F((n+3)/2) if n is odd, a(n) = - 2 + F((n+8)/2) if n is even, where F = A000045 (Fibonacci numbers).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) for n >= 5.
G.f.: (1 - x + 2*x^2)/((1 - x)*(1 - x^2 - x^4)).
From G. C. Greubel, Mar 17 2024: (Start)
a(n) = (1/2)*Sum_{j=0..n} ( (1+(-1)^j)*Lucas(floor(j/2) +1) - (1-(-1)^j) *Fibonacci(floor((j+1)/2)) ).
a(n) = (1/2)*( (1+(-1)^n)*Fibonacci(floor(n/2) +4) + 2*(1-(-1)^n)* Fibonacci(floor((n+3)/2)) ) - 2. (End)

A380823 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

15, 6, 28, 45, 120, 276, 703, 1770, 4560, 11781, 30628, 79800, 208335, 544446, 1423828, 3725085, 9748320, 25514796, 66787903, 174835650, 457697640, 1198222581, 3136914028, 8212428720, 21500225295, 56288009526, 147363418828, 385801624845, 1010040449160, 2644318093956, 6922911197503
Offset: 0

Views

Author

Keywords

Examples

			For n=2, the short leg is A380821(2,1) = 7, the long leg is A380821(2,2) = 24 and the hypotenuse is A380821(2,3) = 25 so the semiperimeter is then a(2) = (7 + 24 + 25)/2 = 28.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[LucasL[n],{n,0,30}];Apply[Join,Map[{(#+1)(2#+1)}&,a]]

Formula

a(n) = (A380821(n,1) + A380821(n,2) + A380821(n,3))/2.
a(n) = (Lucas(n) + 1)*(2*Lucas(n) + 1).
G.f.: (15 - 54*x + 34*x^2 + 35*x^3 - 28*x^4)/((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)). - Stefano Spezia, Mar 08 2025
Previous Showing 71-80 of 1497 results. Next