cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 104 results. Next

A046417 Repunit of length a(n) has exactly 6 prime factors (counted with multiplicity).

Original entry on oeis.org

15, 16, 26, 33, 34, 39, 46, 57, 69, 76, 79, 93, 94, 106, 118, 121, 133, 169, 181, 278, 281, 293
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Crossrefs

Extensions

More terms from Robert Gerbicz, Nov 22 2010
a(20) from Bo Gyu Jeong, Jun 30 2012
a(21)-a(22) from Ray Chandler, Apr 23 2017

A046418 Repunit of length a(n) has exactly 7 prime factors (counted with multiplicity).

Original entry on oeis.org

12, 20, 21, 22, 27, 35, 61, 65, 74, 82, 85, 141, 146, 177, 187, 194, 226, 299, 323, 329, 337
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[300],PrimeOmega[FromDigits[PadRight[{},#,1]]]==7&] (* Harvey P. Dale, Feb 04 2019 *)

Extensions

More terms from Robert Gerbicz, Nov 22 2010
Changed offset to 1, a(18) added by Ray Chandler, Apr 23 2017
a(19)-a(21) from Max Alekseyev, May 14 2022

A046419 Repunit of length a(n) has exactly 8 prime factors (counted with multiplicity).

Original entry on oeis.org

28, 51, 55, 58, 77, 86, 95, 98, 107, 115, 119, 124, 155, 161, 193, 209, 217, 218, 221, 233, 253, 265, 295, 298, 303, 314, 346
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[320],PrimeOmega[FromDigits[Table[1,#]]]==8&] (* Harvey P. Dale, Sep 04 2018 *)

Extensions

More terms from Robert Gerbicz, Nov 22 2010
Offset changed to 1, a(23)-a(26) added by Ray Chandler, Apr 23 2017
a(27) from Max Alekseyev, May 14 2022

A046420 Prime factors of repunit of length a(n) are all of different lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 14, 17, 19, 23, 31, 34, 37, 38, 41, 43, 47, 49, 51, 53, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 85, 86, 89, 93, 94, 97, 101, 103, 106, 109, 113, 115, 118, 119, 129, 134, 137, 139, 141, 142, 146, 149, 151, 157, 159, 163
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			a(n)=14 -> 11*239*4649*909091 -> (2)(3)(4)(6) all of different lengths.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60],Length[fi=FactorInteger[(10^#-1)/9]]== Plus@@Last/@fi==Length[Union[IntegerLength/@First/@fi]]&] (* Ray Chandler, Apr 24 2017 *)

Extensions

Offset changed to 1 and more terms added by Ray Chandler, Apr 24 2017

A068743 Digitized partition numbers: numbers with (weakly) decreasing digits ordered by sum of their digits then by the numbers themselves.

Original entry on oeis.org

0, 1, 2, 11, 3, 21, 111, 4, 22, 31, 211, 1111, 5, 32, 41, 221, 311, 2111, 11111, 6, 33, 42, 51, 222, 321, 411, 2211, 3111, 21111, 111111, 7, 43, 52, 61, 322, 331, 421, 511, 2221, 3211, 4111, 22111, 31111, 211111, 1111111, 8, 44, 53, 62, 71, 332, 422, 431, 521
Offset: 0

Views

Author

Henry Bottomley, Feb 27 2002

Keywords

Comments

a(97) cannot be written in decimal since it requires ten to be written as a single digit.

Examples

			The partitions of 6 are 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1; removing the + signs gives 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111; ordering these by size gives 6, 33, 42, 51, 222, 321, 411, 2211, 3111, 21111, 111111 as part of the sequence.
		

Crossrefs

Cf. A060002 which writes the partitions with smallest digit first, number of values of a(n) with a digit sum of k is A000041, number of values of a(n) with a digit sum of k and m digits is A008284, a(A000070(n))=n+1 written as a single digit, a(A026905(n))=A000042(n).

Programs

  • Mathematica
    Table[Sort[FromDigits[Flatten[IntegerDigits/@#]]&/@IntegerPartitions[n]],{n,0,20}]//Flatten (* Harvey P. Dale, May 18 2024 *)

A082207 Palindromes whose product of digits is a positive palindrome.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 111, 121, 131, 141, 151, 161, 171, 181, 191, 212, 222, 313, 676, 777, 1111, 1221, 1331, 2112, 3113, 11111, 11211, 11311, 11411, 11511, 11611, 11711, 11811, 11911, 12121, 12221, 13131, 16761, 17771, 21112, 21212
Offset: 1

Views

Author

Amarnath Murthy, Apr 10 2003

Keywords

Comments

The unary sequence A000042 is a trivial subsequence.
Conjecture: There are infinitely many terms in the sequence (of the type 777) for which the product of digits > 10.
Subset of A117055, containing terms for which product of digits is greater than 0. - Jayanta Basu, May 15 2013

Examples

			777 is a term as 7^3 = 343 is a palindrome.
		

Crossrefs

Cf. A082208.

Programs

  • Mathematica
    id[n_]:=IntegerDigits[n]; palQ[n_]:=Reverse[x=id[n]]==x; t={}; Do[If[palQ[n] && (y=Times@@id[n]) > 0 && palQ[y], AppendTo[t,n]], {n,21220}]; t (* Jayanta Basu, May 15 2013 *)
    Select[Range[22000],FreeQ[IntegerDigits[#],0]&&AllTrue[{#,Times @@ IntegerDigits[ #]},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 22 2019 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A083818 Numbers k such that 2k-1 is the digit reversal of k.

Original entry on oeis.org

1, 37, 397, 3997, 39997, 399997, 3999997, 39999997, 399999997, 3999999997, 39999999997, 399999999997, 3999999999997, 39999999999997, 399999999999997, 3999999999999997, 39999999999999997, 399999999999999997, 3999999999999999997, 39999999999999999997, 399999999999999999997
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 08 2003

Keywords

Comments

a(n) = 1 + 36 + 360 + 3600 + 36000 + ..., for a total of n terms. a(n) = 1 + sum of first n-1 terms of the geometric progression with first term 36 and common ratio 10. a(n) = 1 + 36*A000042(n-1) (the unary sequence).

Examples

			2*37 - 1 = 73.
		

Crossrefs

Digit reversals of A169830.

Programs

  • PARI
    my(x='x+O('x^22)); Vec(x*(1+26*x)/((1-x)*(1-10*x))) \\ Elmo R. Oliveira, Jun 12 2025

Formula

a(n) = 4*10^(n-1) - 3.
From Elmo R. Oliveira, Jun 12 2025: (Start)
G.f.: x*(26*x+1)/((x-1)*(10*x-1)).
E.g.f.: (13 - 15*exp(x) + 2*exp(10*x))/5.
a(n) = 11*a(n-1) - 10*a(n-2) for n >= 3. (End)

Extensions

a(1)=1 inserted by David Radcliffe, Jul 25 2015

A110380 a(n) = min{p + q + r + ...} where p,q,r,... are distinct unary numbers - containing only ones, i.e., of the form (10^k - 1)/9 - formed by using a total of n ones.

Original entry on oeis.org

1, 11, 12, 112, 122, 123, 1123, 1223, 1233, 1234, 11234, 12234, 12334, 12344, 12345, 112345, 122345, 123345, 123445, 123455, 123456, 1123456, 1223456, 1233456, 1234456, 1234556, 1234566, 1234567, 11234567, 12234567, 12334567, 12344567, 12345567, 12345667, 12345677
Offset: 1

Views

Author

Amarnath Murthy, Jul 25 2005

Keywords

Comments

The n-th term is the sum of m = A003056(n) repunits A000042, with the last n - m(m+1)/2 terms having one digit more than their index in that sum: see formula. The initial terms can also be described as numbers made of all of the digits 1 through m (m = 1, ..., 9) in increasing order, and at most one of these digits occurring twice in a row. - M. F. Hasler, Aug 08 2020

Examples

			Using n ones and only the + sign we get the following sums:
  a(1) = 1;
  a(2) = 11;
  a(3) = 12 = 1 + 11;
  a(4) = 112 = 1 + 111;
  a(5) = 122 = 11 + 111;
  a(6) = 123 = 1 + 11 + 111;
  a(7) = 1123 = 1 + 11 + 1111;
  a(8) = 1223 = 1 + 111 + 1111;
  a(9) = 1233 = 11 + 111 + 1111.
		

Crossrefs

Programs

  • Haskell
    a110380 = drop 1 fn
              where fn    = 0 : 1 : concat (fn' 2)
                    fn' n = (map (+ones) (drop nv $ take (n + nv) fn)) : (fn' (n+1))
                            where ones = div (10^n -1) 9
                                  nv   = div ((n-1)*(n-2)) 2
    -- Fred Schneider, Sep 04 2016
    
  • PARI
    apply( {A110380(n,m=A003056(n))=sum(k=1,m,10^((n+k>(m+3)*m\2)+k)\9)}, [1..40]) \\ with {A003056(n)=(sqrtint(n*8+1)-1)\2}. M. F. Hasler, Aug 08 2020

Formula

a(n) = Sum_{k=1..m} A000042(k + [m(m+3)/2 < n+k]), with m = A003056(n). - M. F. Hasler, Aug 08 2020

Extensions

More terms from Joshua Zucker, May 08 2006

A178865 Triangle read by rows; generalization of A101950.

Original entry on oeis.org

1, 10, 1, 90, 20, 1, 800, 280, 30, 1, 7101, 3400, 570, 40, 1, 63010, 38301, 8800, 960, 50, 1, 559090, 412020, 120601, 18000, 1450, 60, 1, 4960800, 4296280, 1530030, 291001, 32000, 2040, 70, 1
Offset: 1

Views

Author

Mark Dols, Jun 20 2010

Keywords

Comments

Rows sum up to A000042
Erroneous version of A206819. - Philippe Deléham, Feb 23 2013

Examples

			Triangle begins:
1,
10, 1,
90, 20, 1,
800, 280, 30, 1
		

Crossrefs

A206819 Riordan array (1/(1-10*x-10*x^2), x/(1-10*x-10*x^2)).

Original entry on oeis.org

1, 10, 1, 90, 20, 1, 800, 280, 30, 1, 7100, 3400, 570, 40, 1, 63000, 38300, 8800, 960, 50, 1, 559000, 412000, 120600, 18000, 1450, 60, 1, 4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 12 2012

Keywords

Comments

Row sums are A000042(n+1).
Subtriangle of triangle given by (0, 10, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
1
10, 1
90, 20, 1
800, 280, 30, 1
7100, 3400, 570, 40, 1
63000, 38300, 8800, 960, 50, 1
559000, 412000, 120600, 18000, 1450, 60, 1
4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Triangle (0, 10, -1, 1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) begins :
1
0, 1
0, 10, 1
0, 90, 20, 1
0, 800, 280, 30, 1
0, 7100, 3400, 570, 40, 1 ...
		

Crossrefs

Formula

T(n,k) = 10*T(n-1,k) - 10*T(n-2,k) + T(n-1,k-1).
G.f.: 1/(1-10*x+10*x^2-y*x).
Sum_{k, 0<=k} T(n,k)*x^k = A178869(n+1), A057086(n), A000042(n+1) for x = -1, 0, 1 respectively.
Previous Showing 71-80 of 104 results. Next