A046417
Repunit of length a(n) has exactly 6 prime factors (counted with multiplicity).
Original entry on oeis.org
15, 16, 26, 33, 34, 39, 46, 57, 69, 76, 79, 93, 94, 106, 118, 121, 133, 169, 181, 278, 281, 293
Offset: 1
A046418
Repunit of length a(n) has exactly 7 prime factors (counted with multiplicity).
Original entry on oeis.org
12, 20, 21, 22, 27, 35, 61, 65, 74, 82, 85, 141, 146, 177, 187, 194, 226, 299, 323, 329, 337
Offset: 1
-
Select[Range[300],PrimeOmega[FromDigits[PadRight[{},#,1]]]==7&] (* Harvey P. Dale, Feb 04 2019 *)
Changed offset to 1, a(18) added by
Ray Chandler, Apr 23 2017
A046419
Repunit of length a(n) has exactly 8 prime factors (counted with multiplicity).
Original entry on oeis.org
28, 51, 55, 58, 77, 86, 95, 98, 107, 115, 119, 124, 155, 161, 193, 209, 217, 218, 221, 233, 253, 265, 295, 298, 303, 314, 346
Offset: 1
Offset changed to 1, a(23)-a(26) added by
Ray Chandler, Apr 23 2017
A046420
Prime factors of repunit of length a(n) are all of different lengths.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 11, 14, 17, 19, 23, 31, 34, 37, 38, 41, 43, 47, 49, 51, 53, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 85, 86, 89, 93, 94, 97, 101, 103, 106, 109, 113, 115, 118, 119, 129, 134, 137, 139, 141, 142, 146, 149, 151, 157, 159, 163
Offset: 1
a(n)=14 -> 11*239*4649*909091 -> (2)(3)(4)(6) all of different lengths.
Offset changed to 1 and more terms added by
Ray Chandler, Apr 24 2017
A068743
Digitized partition numbers: numbers with (weakly) decreasing digits ordered by sum of their digits then by the numbers themselves.
Original entry on oeis.org
0, 1, 2, 11, 3, 21, 111, 4, 22, 31, 211, 1111, 5, 32, 41, 221, 311, 2111, 11111, 6, 33, 42, 51, 222, 321, 411, 2211, 3111, 21111, 111111, 7, 43, 52, 61, 322, 331, 421, 511, 2221, 3211, 4111, 22111, 31111, 211111, 1111111, 8, 44, 53, 62, 71, 332, 422, 431, 521
Offset: 0
The partitions of 6 are 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1; removing the + signs gives 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111; ordering these by size gives 6, 33, 42, 51, 222, 321, 411, 2211, 3111, 21111, 111111 as part of the sequence.
Cf.
A060002 which writes the partitions with smallest digit first, number of values of a(n) with a digit sum of k is
A000041, number of values of a(n) with a digit sum of k and m digits is
A008284, a(
A000070(n))=n+1 written as a single digit, a(
A026905(n))=
A000042(n).
-
Table[Sort[FromDigits[Flatten[IntegerDigits/@#]]&/@IntegerPartitions[n]],{n,0,20}]//Flatten (* Harvey P. Dale, May 18 2024 *)
A082207
Palindromes whose product of digits is a positive palindrome.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 111, 121, 131, 141, 151, 161, 171, 181, 191, 212, 222, 313, 676, 777, 1111, 1221, 1331, 2112, 3113, 11111, 11211, 11311, 11411, 11511, 11611, 11711, 11811, 11911, 12121, 12221, 13131, 16761, 17771, 21112, 21212
Offset: 1
777 is a term as 7^3 = 343 is a palindrome.
-
id[n_]:=IntegerDigits[n]; palQ[n_]:=Reverse[x=id[n]]==x; t={}; Do[If[palQ[n] && (y=Times@@id[n]) > 0 && palQ[y], AppendTo[t,n]], {n,21220}]; t (* Jayanta Basu, May 15 2013 *)
Select[Range[22000],FreeQ[IntegerDigits[#],0]&&AllTrue[{#,Times @@ IntegerDigits[ #]},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 22 2019 *)
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
A083818
Numbers k such that 2k-1 is the digit reversal of k.
Original entry on oeis.org
1, 37, 397, 3997, 39997, 399997, 3999997, 39999997, 399999997, 3999999997, 39999999997, 399999999997, 3999999999997, 39999999999997, 399999999999997, 3999999999999997, 39999999999999997, 399999999999999997, 3999999999999999997, 39999999999999999997, 399999999999999999997
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 08 2003
A110380
a(n) = min{p + q + r + ...} where p,q,r,... are distinct unary numbers - containing only ones, i.e., of the form (10^k - 1)/9 - formed by using a total of n ones.
Original entry on oeis.org
1, 11, 12, 112, 122, 123, 1123, 1223, 1233, 1234, 11234, 12234, 12334, 12344, 12345, 112345, 122345, 123345, 123445, 123455, 123456, 1123456, 1223456, 1233456, 1234456, 1234556, 1234566, 1234567, 11234567, 12234567, 12334567, 12344567, 12345567, 12345667, 12345677
Offset: 1
Using n ones and only the + sign we get the following sums:
a(1) = 1;
a(2) = 11;
a(3) = 12 = 1 + 11;
a(4) = 112 = 1 + 111;
a(5) = 122 = 11 + 111;
a(6) = 123 = 1 + 11 + 111;
a(7) = 1123 = 1 + 11 + 1111;
a(8) = 1223 = 1 + 111 + 1111;
a(9) = 1233 = 11 + 111 + 1111.
-
a110380 = drop 1 fn
where fn = 0 : 1 : concat (fn' 2)
fn' n = (map (+ones) (drop nv $ take (n + nv) fn)) : (fn' (n+1))
where ones = div (10^n -1) 9
nv = div ((n-1)*(n-2)) 2
-- Fred Schneider, Sep 04 2016
-
apply( {A110380(n,m=A003056(n))=sum(k=1,m,10^((n+k>(m+3)*m\2)+k)\9)}, [1..40]) \\ with {A003056(n)=(sqrtint(n*8+1)-1)\2}. M. F. Hasler, Aug 08 2020
A178865
Triangle read by rows; generalization of A101950.
Original entry on oeis.org
1, 10, 1, 90, 20, 1, 800, 280, 30, 1, 7101, 3400, 570, 40, 1, 63010, 38301, 8800, 960, 50, 1, 559090, 412020, 120601, 18000, 1450, 60, 1, 4960800, 4296280, 1530030, 291001, 32000, 2040, 70, 1
Offset: 1
Triangle begins:
1,
10, 1,
90, 20, 1,
800, 280, 30, 1
A206819
Riordan array (1/(1-10*x-10*x^2), x/(1-10*x-10*x^2)).
Original entry on oeis.org
1, 10, 1, 90, 20, 1, 800, 280, 30, 1, 7100, 3400, 570, 40, 1, 63000, 38300, 8800, 960, 50, 1, 559000, 412000, 120600, 18000, 1450, 60, 1, 4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Offset: 0
Triangle begins :
1
10, 1
90, 20, 1
800, 280, 30, 1
7100, 3400, 570, 40, 1
63000, 38300, 8800, 960, 50, 1
559000, 412000, 120600, 18000, 1450, 60, 1
4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Triangle (0, 10, -1, 1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) begins :
1
0, 1
0, 10, 1
0, 90, 20, 1
0, 800, 280, 30, 1
0, 7100, 3400, 570, 40, 1 ...
Comments