cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A263294 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n vertices and treewidth k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 9, 17, 6, 1, 1, 19, 72, 53, 10, 1, 1, 36, 323, 501, 168, 14, 1, 1, 75, 1639, 5889, 4163, 557, 21, 1, 1, 152, 9203, 81786, 138923, 42596, 1977, 29, 1
Offset: 1

Views

Author

Christian Stump, Oct 13 2015

Keywords

Comments

A graph without edges has treewidth 0, any other forest has treewidth 1, any other series parallel graph has treewidth 2. - Martin Rubey, May 10 2023

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,    1;
  1,   5,    4,     1;
  1,   9,   17,     6,      1;
  1,  19,   72,    53,     10,     1;
  1,  36,  323,   501,    168,    14,    1;
  1,  75, 1639,  5889,   4163,   557,   21,  1;
  1, 152, 9203, 81786, 138923, 42596, 1977, 29, 1;
  ...
		

Crossrefs

Columns k=2..3 are A362908, A362907.
Partial row sums include A000012, A005195, A000041.
Row sums are A000088.
T(n,n-2) = A000065(n).

Extensions

Corrected and extended by Martin Rubey, May 10 2023

A291336 Number F(n,h,t) of forests of t unlabeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 2, 1, 0, 4, 3, 1, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 3, 2, 1, 0, 6, 8, 3, 1, 0, 8, 4, 1, 0, 4, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 4, 3, 2, 1, 0, 10, 15, 9, 3, 1, 0, 18, 13, 4, 1, 0, 13, 5, 1, 0, 5, 1, 0, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 22 2017

Keywords

Comments

Elements in rows h=0 give A023531.
Positive elements in rows h=1 give A008284.
Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A034781.
Positive column sums per layer give A033185.

Examples

			n h\t: 0 1 2 3 4 5 : A034781 : A033185   : A000081
-----+-------------+---------+-----------+--------
0 0  : 1           :         :           : 1
-----+-------------+---------+-----------+--------
1 0  : 0 1         :       1 : .         :
1 1  : 0           :         : 1         : 1
-----+-------------+---------+-----------+--------
2 0  : 0 0 1       :       1 : . .       :
2 1  : 0 1         :       1 : .         :
2 2  : 0           :         : 1 1       : 2
-----+-------------+---------+-----------+--------
3 0  : 0 0 0 1     :       1 : . . .     :
3 1  : 0 1 1       :       2 : . .       :
3 2  : 0 1         :       1 : .         :
3 3  : 0           :         : 2 1 1     : 4
-----+-------------+---------+-----------+--------
4 0  : 0 0 0 0 1   :       1 : . . . .   :
4 1  : 0 1 2 1     :       4 : . . .     :
4 2  : 0 2 1       :       3 : . .       :
4 3  : 0 1         :       1 : .         :
4 4  : 0           :         : 4 3 1 1   : 9
-----+-------------+---------+-----------+--------
5 0  : 0 0 0 0 0 1 :       1 : . . . . . :
5 1  : 0 1 2 2 1   :       6 : . . . .   :
5 2  : 0 4 3 1     :       8 : . . .     :
5 3  : 0 3 1       :       4 : . .       :
5 4  : 0 1         :       1 : .         :
5 5  : 0           :         : 9 6 3 1 1 : 20
-----+-------------+---------+-----------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0
           or i=1, x^(t*n), b(n, i-1, t, h)+add(x^(t*j)*binomial(
           b(i-1$2, 0, h-1)+j-1, j)*b(n-i*j, i-1, t, h), j=1..n/i)))
        end:
    g:= (n, h)-> b(n$2, 1, h)-`if`(h=0, 0, b(n$2, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..9);
  • Mathematica
    b[n_, i_, t_, h_] := b[n, i, t, h] = Expand[If[n == 0 || h == 0
         || i == 1, x^(t*n), b[n, i-1, t, h] + Sum[x^(t*j)*Binomial[
         b[i-1, i-1, 0, h-1]+j-1, j]*b[n - i*j, i-1, t, h], {j, 1, n/i}]]];
    g[n_, h_] := b[n, n, 1, h] - If[h == 0, 0, b[n, n, 1, h-1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[Table[Table[F[n, h, t], {t, 0, n-h}], {h, 0, n}], {n, 0, 9}] //
    Flatten (* Jean-François Alcover, Mar 10 2022, after Alois P. Heinz *)

Formula

Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000081(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A005197(n).
Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A001853(n+1) for n>0.
Sum_{t=0..n-1} F(n,1,t) = A000065(n) = A000041(n) - 1.
F(n,1,1) = 1 for n>1.
F(n,0,0) = A000007(n).

A347542 Number of partitions of n into 6 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 44, 65, 92, 130, 178, 244, 326, 435, 571, 747, 964, 1242, 1581, 2009, 2530, 3178, 3962, 4930, 6094, 7518, 9225, 11296, 13768, 16751, 20295, 24546, 29583, 35591, 42685, 51112, 61028, 72757, 86523, 102740, 121720, 144007, 170018, 200461, 235910, 277270
Offset: 6

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 6, nmax}], {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: Sum_{k>=6} x^k / Product_{j=1..k} (1 - x^j).

A347543 Number of partitions of n into 7 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 66, 95, 134, 186, 255, 345, 461, 611, 801, 1043, 1346, 1727, 2199, 2787, 3508, 4398, 5482, 6809, 8414, 10365, 12711, 15545, 18935, 23006, 27854, 33646, 40513, 48680, 58326, 69748, 83192, 99048, 117650, 139513, 165083, 195034, 229968, 270760
Offset: 7

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 7, nmax}], {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: Sum_{k>=7} x^k / Product_{j=1..k} (1 - x^j).

A347544 Number of partitions of n into 8 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 96, 137, 190, 263, 356, 480, 637, 842, 1098, 1427, 1835, 2351, 2986, 3780, 4749, 5949, 7405, 9190, 11344, 13966, 17111, 20913, 25454, 30908, 37393, 45141, 54315, 65222, 78090, 93317, 111220, 132323, 157050, 186088, 220015, 259716
Offset: 8

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 8, nmax}], {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: Sum_{k>=8} x^k / Product_{j=1..k} (1 - x^j).

A347545 Number of partitions of n into 9 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 138, 193, 267, 364, 491, 656, 868, 1139, 1483, 1917, 2461, 3142, 3985, 5030, 6315, 7893, 9817, 12165, 15007, 18451, 22597, 27589, 33565, 40724, 49249, 59410, 71460, 85753, 102632, 122574, 146032, 173638, 206003, 243951, 288296, 340124
Offset: 9

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 9, nmax}], {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: Sum_{k>=9} x^k / Product_{j=1..k} (1 - x^j).

A347547 Number of partitions of n into 10 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 194, 270, 368, 499, 667, 887, 1165, 1524, 1973, 2544, 3253, 4143, 5239, 6602, 8268, 10320, 12813, 15859, 19537, 24000, 29359, 35820, 43541, 52795, 63803, 76929, 92476, 110926, 132694, 158414, 188649, 224231, 265916, 314793
Offset: 10

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 10, nmax}], {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: Sum_{k>=10} x^k / Product_{j=1..k} (1 - x^j).

A167930 Number of partitions of n in which some but not all parts are equal.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 4, 9, 13, 20, 29, 43, 57, 82, 110, 146, 195, 258, 334, 435, 558, 713, 910, 1150, 1446, 1814, 2268, 2815, 3491, 4308, 5301, 6501, 7954, 9692, 11795, 14295, 17301, 20876, 25148, 30200, 36218, 43322, 51741, 61650, 73354
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

The parts may not all be equal, and at least one part must occur at least twice. - N. J. A. Sloane, May 30 2024

Examples

			The partitions of 6 are:
6 ....................... All parts are distinct.
5 + 1 ................... All parts are distinct.
4 + 2 ................... All parts are distinct.
4 + 1 + 1 ............... Only some parts are equal ...... (1).
3 + 3 ................... All parts are equal.
3 + 2 + 1 ............... All parts are distinct.
3 + 1 + 1 + 1 ........... Only some parts are equal ...... (2).
2 + 2 + 2 ............... All parts are equal.
2 + 2 + 1 + 1 ........... Only some parts are equal ...... (3).
2 + 1 + 1 + 1 + 1 ....... Only some parts are equal ...... (4).
1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal.
Then a(6) = 4.
a(7) = 9 from 511  4111  331  322  3211  31111  2221  22111  211111. - _N. J. A. Sloane_, May 30 2024
		

Crossrefs

Programs

  • Mathematica
    f[lst_]:=With[{c=Split[lst]},Length[lst]>2&&Max[Length/@c]>1&&Length[c]>1]; Table[Length[ Select[ IntegerPartitions[n],f]],{n,0,50}] (* Harvey P. Dale, May 30 2024 *)

Formula

a(n) = A047967(n) - A032741(n).
a(n) = A000041(n) - A000009(n) - A032741(n).
a(0) = 0: For n>0, a(n) = A000041(n) - A000009(n) - A000005(n) + 1.

Extensions

Edited by Omar E. Pol, Nov 16 2009
More terms from Max Alekseyev, May 02 2011

A167932 Number of partitions of n such that all parts are equal or all parts are distinct.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 6, 9, 10, 13, 13, 20, 19, 25, 30, 36, 39, 51, 55, 69, 79, 92, 105, 129, 144, 168, 195, 227, 257, 303, 341, 395, 451, 515, 588, 676, 761, 867, 985, 1120, 1261, 1433, 1611, 1821, 2053, 2307, 2591, 2919, 3266, 3663, 4100, 4587, 5121, 5725, 6381
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

Note that for positive integers the number of partitions of n such that all parts are equal is equal to the number of proper divisors of n. (A032741(n)).

Examples

			The partitions of 6 are:
6 .............. All parts are distinct ..... (1).
5+1 ............ All parts are distinct ..... (2).
4+2 ............ All parts are distinct ..... (3).
4+1+1 .......... Only some parts are equal.
3+3 ............ All parts are equal ........ (4).
3+2+1 .......... All parts are distinct ..... (5).
3+1+1+1 ........ Only some parts are equal.
2+2+2 .......... All parts are equal ........ (6).
2+2+1+1 ........ Only some parts are equal.
2+1+1+1+1 ...... Only some parts are equal.
1+1+1+1+1+1 .... All parts are equal ........ (7).
So a(6) = 7.
		

Crossrefs

Programs

Formula

a(n) = A000041(n) - A167930(n).
a(n) = A000009(n) + A032741(n).

Extensions

More terms from D. S. McNeil, May 10 2010

A238495 Number of partitions p of n such that min(p) + (number of parts of p) is not a part of p.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 14, 19, 27, 36, 51, 66, 90, 118, 156, 201, 264, 336, 434, 550, 700, 880, 1112, 1385, 1733, 2149, 2666, 3283, 4049, 4956, 6072, 7398, 9009, 10922, 13237, 15970, 19261, 23147, 27790, 33260, 39776, 47425, 56497, 67133, 79685, 94371, 111653
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2014

Keywords

Comments

Also the number of integer partitions of n + 1 with median > 1, or with no more 1's than non-1 parts. - Gus Wiseman, Jul 10 2023

Examples

			a(6) = 9 counts all the 11 partitions of 6 except 42 and 411.
From _Gus Wiseman_, Jul 10 2023 (Start)
The a(2) = 1 through a(8) = 14 partitions:
  (2)  (3)   (4)   (5)    (6)     (7)     (8)
       (21)  (22)  (32)   (33)    (43)    (44)
             (31)  (41)   (42)    (52)    (53)
                   (221)  (51)    (61)    (62)
                          (222)   (322)   (71)
                          (321)   (331)   (332)
                          (2211)  (421)   (422)
                                  (2221)  (431)
                                  (3211)  (521)
                                          (2222)
                                          (3221)
                                          (3311)
                                          (4211)
                                          (22211)
(End)
		

Crossrefs

Cf. A096373.
For mean instead of median we have A000065, ranks A057716.
The complement is counted by A027336, ranks A364056.
Rows sums of A359893 if we remove the first column.
These partitions have ranks A364058.
A000041 counts integer partitions.
A008284 counts partitions by length, A058398 by mean.
A025065 counts partitions with low mean 1, ranks A363949.
A124943 counts partitions by low median, high A124944.
A241131 counts partitions with low mode 1, ranks A360015.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Length[p] + Min[p]]], {n, 50}]
    Table[Length[Select[IntegerPartitions[n+1],Median[#]>1&]],{n,30}] (* Gus Wiseman, Jul 10 2023 *)

Formula

From Gus Wiseman, Jul 11 2023: (Start)
a(n>2) = A000041(n) - A096373(n-2).
a(n>1) = A000041(n-2) + A002865(n+1).
a(n) = A000041(n+1) - A027336(n).
(End)

Extensions

Formula corrected by Gus Wiseman, Jul 11 2023
Previous Showing 21-30 of 44 results. Next