A067590 Number of partitions of n into odious numbers (A000069).
1, 1, 2, 2, 4, 4, 6, 7, 11, 12, 16, 19, 25, 29, 37, 44, 56, 64, 79, 92, 112, 130, 157, 182, 217, 250, 296, 341, 401, 461, 539, 615, 717, 817, 945, 1076, 1240, 1409, 1614, 1830, 2091, 2365, 2692, 3040, 3451, 3885, 4398, 4942, 5581, 6260, 7050, 7896, 8870, 9916
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Transforms
Programs
-
Maple
h:= proc(n) option remember; `if`(n<1, 0, `if`(add(i, i=Bits[Split](n))::odd, n, h(n-1))) end: b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, h(i-1))+b(n-i, h(min(n-i, i)))) end: a:= n-> b(n, h(n)): seq(a(n), n=0..100); # Alois P. Heinz, Sep 08 2019
-
Mathematica
f[n_] := f[n] = DigitCount[n, 2][[1]] // OddQ // Boole; etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[f][n]; a /@ Range[0, 100] (* Jean-François Alcover, Nov 23 2020 *)
Formula
Euler Transform of characteristic function of A000069.
Conjecture: a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(5/8), where c = 0.221864833... - Vaclav Kotesovec, Jul 06 2025
Extensions
a(0) corrected by Alois P. Heinz, Sep 08 2019
Comments