cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 401 results. Next

A359848 a(n) is the smallest tribonacci number (A000073) with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 24, 504, 35890, 8646064, 1697490356184, 120879712950776, 98079530178586034536500564, 748829299860308729347600, 119816209721856219780831547518850, 15418262617564622254988364568360573618470100684551892712710640455037970
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Examples

			a(4) = 35890, because 35890 is a tribonacci number with 4 distinct prime factors {2, 5, 37, 97} and this is the smallest such number.
		

Crossrefs

Extensions

a(11) from Daniel Suteu, Jan 17 2023

A359850 a(n) is the index of the smallest tribonacci number (A000073) with exactly n distinct prime factors.

Original entry on oeis.org

2, 4, 8, 13, 20, 29, 49, 56, 101, 93, 124, 268, 221
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2023

Keywords

Crossrefs

Extensions

a(11)-a(12) from Daniel Suteu, Jan 17 2023

A366780 Number of distinct prime divisors of A000073(n) (tribonacci numbers).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 3, 2, 3, 1, 3, 4, 3, 3, 2, 2, 2, 3, 3, 3, 5, 3, 4, 5, 3, 4, 3, 5, 4, 5, 3, 5, 3, 2, 4, 2, 4, 5, 4, 4, 6, 2, 5, 5, 6, 3, 5, 7, 5, 2, 3, 5, 4, 6, 5, 4, 7, 3, 2, 4, 4, 3, 3, 4, 5, 2, 6, 6, 6, 5, 3, 6, 5, 4, 2, 6, 3, 6, 1, 7
Offset: 2

Views

Author

Sean A. Irvine, Oct 22 2023

Keywords

Examples

			a(8)=2 because the 8th tribonacci number 24 = 2^3*3 has 2 distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    PrimeNu[LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 87]] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A001221(A000073(n)).

A366781 Number of prime divisors of A000073(n) (tribonacci numbers) (counted with multiplicity).

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 4, 3, 4, 1, 2, 6, 3, 3, 8, 5, 2, 3, 4, 4, 3, 6, 4, 3, 4, 4, 3, 8, 4, 5, 11, 6, 4, 4, 10, 5, 5, 5, 9, 4, 2, 4, 2, 6, 5, 4, 11, 11, 2, 6, 7, 9, 3, 5, 9, 6, 2, 3, 5, 8, 12, 5, 11, 12, 4, 2, 4, 6, 3, 3, 6, 6, 2, 10, 7, 8, 7, 5, 12, 7, 4, 2, 6, 4
Offset: 2

Views

Author

Sean A. Irvine, Oct 22 2023

Keywords

Examples

			a(8)=4 because the 8th tribonacci number 24 = 2^3*3 has 4 prime factors.
		

Crossrefs

Programs

  • Mathematica
    PrimeOmega[LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 84]] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A001222(A000073(n)).

A366782 Number of divisors of A000073(n) (tribonacci numbers).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 8, 6, 5, 2, 4, 24, 6, 8, 21, 16, 3, 8, 16, 12, 8, 12, 8, 6, 12, 12, 8, 80, 12, 24, 168, 20, 16, 12, 144, 24, 32, 16, 128, 12, 4, 16, 4, 32, 32, 16, 96, 320, 4, 48, 72, 216, 8, 32, 256, 48, 4, 8, 32, 48, 384, 32, 96, 576, 12, 4, 16, 36, 8, 8
Offset: 2

Views

Author

Sean A. Irvine, Oct 22 2023

Keywords

Examples

			a(8)=8 because the 8th tribonacci number 24 has divisors {1, 2, 3, 4, 6, 8, 12, 24}.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 70]] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A000005(A000073(n)).

A112305 Let T(n) = A000073(n+1), n >= 1; a(n) = smallest k such that n divides T(k).

Original entry on oeis.org

1, 3, 7, 4, 14, 7, 5, 7, 9, 19, 8, 7, 6, 12, 52, 15, 28, 12, 18, 31, 12, 8, 29, 7, 30, 39, 9, 12, 77, 52, 14, 15, 35, 28, 21, 12, 19, 28, 39, 31, 35, 12, 82, 8, 52, 55, 29, 64, 15, 52, 124, 39, 33, 35, 14, 12, 103, 123, 64, 52, 68, 60, 12, 15, 52, 35, 100, 28, 117
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2005

Keywords

Comments

Brenner proves that every prime divides some tribonacci number T(n). The Mathematica program computes similar sequences for any n-step Fibonacci sequence.

Examples

			T(1), T(2), T(3), T(4), ... are 1,1,2,4,7,13,24,...; a(3) = 7 because 3 first divides T(7) = A000073(8) = 24.
		

References

  • Ed Pegg, Jr., Posting to Sequence Fan mailing list, Nov 30, 2005

Crossrefs

Cf. A000073.
Cf. A112312 (least k such that prime(n) divides T(k)).

Programs

  • Mathematica
    n=3; Table[a=Join[{1}, Table[0, {n-1}]]; k=0; While[k++; s=Mod[Plus@@a, i]; a=RotateLeft[a]; a[[n]]=s; s!=0]; k, {i, 100}] (* T. D. Noe *)

A222407 Digital roots of tribonacci numbers A000073.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 20 2013

Keywords

Comments

From a(2) onwards, periodic with period length 39.
The period sums to 216 and contains no 3s. When divided into three sets of 13, further patterns are revealed in connection with A100402 (see link below). - Peter M. Chema, Dec 21 2016

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then 0; elif n=2 then 1; else f(n-3)+f(n-2)+f(n-1); fi; end; # A000073
    P:=n->if n=0 then 0 else ((n-1) mod 9) + 1; fi; # A010888
    [seq(P(f(n)),n=0..200)];
  • Mathematica
    FixedPoint[Total@ IntegerDigits@ # &, #] & /@ CoefficientList[ Series[x^2/(1 - x - x^2 - x^3), {x, 0, 81}], x] (* Michael De Vlieger, Dec 22 2016 *)
    droot[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; droot/@LinearRecurrence[{1,1,1},{0,0,1},150] (* or *) PadRight[{0,0},150,{9,9,1,1,2,4,7,4,6,8,9,5,4,9,9,4,4,8,7,1,7,6,5,9,2,7,9,9,7,7,5,1,4,1,6,2,9,8,1}] (* Harvey P. Dale, Aug 21 2024 *)

Formula

a(n) = A010888(A000073(n)). - Michel Marcus, Dec 19 2016
From Chai Wah Wu, Jan 30 2018: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-7) - a(n-9) + a(n-10) - a(n-12) + a(n-13) - a(n-15) + a(n-16) - a(n-18) + a(n-19) - a(n-21) + a(n-22) - a(n-24) + a(n-25) - a(n-27) + a(n-28) - a(n-30) + a(n-31) - a(n-33) + a(n-34) - a(n-36) + a(n-37) for n > 38.
G.f.: (-9*x^38 + 8*x^36 - 16*x^35 - x^34 + 15*x^33 - 20*x^32 + 4*x^31 + 12*x^30 - 17*x^29 + 10*x^27 - 17*x^26 - 2*x^25 + 10*x^24 - 15*x^23 + 3*x^22 + 3*x^21 - 11*x^20 + 2*x^19 + 2*x^18 - 5*x^17 - 4*x^16 + x^15 - x^14 - 4*x^13 - 4*x^12 - x^11 + x^10 - 5*x^9 - 5*x^8 + 2*x^7 - 3*x^6 - 3*x^5 - x^4 - x^2)/(x^37 - x^36 + x^34 - x^33 + x^31 - x^30 + x^28 - x^27 + x^25 - x^24 + x^22 - x^21 + x^19 - x^18 + x^16 - x^15 + x^13 - x^12 + x^10 - x^9 + x^7 - x^6 + x^4 - x^3 + x - 1). (End)

A254231 Product of tribonacci numbers A000073(2) * ... * A000073(n).

Original entry on oeis.org

1, 1, 2, 8, 56, 728, 17472, 768768, 62270208, 9278260992, 2542243511808, 1281290729951232, 1187756506664792064, 2025124843863470469120, 6350791510355843391160320, 36631365431732504680212725760, 388622155865250142152376807587840
Offset: 2

Views

Author

Vaclav Kotesovec, Jan 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[SeriesCoefficient[x^2/(1-x-x^2-x^3),{x,0,k}],{k,2,n}], {n,2,20}]
  • Python
    A254231_list, a, b, c, d = [1], 0, 0, 1, 1
    for _ in range(15):
        a, b, c = b, c, a+b+c
        d *= c
        A254231_list.append(d) # Chai Wah Wu, Jan 27 2015

Formula

a(n) ~ c * d^(n/2) * r^(n^2/2), where r = A058265 = 1.839286755214161132551852564653286600424178746097592246778758639404203222... is the root of the equation r^3 - r^2 - r - 1 = 0, d = 0.061463687669952618841340986526101395138659648898940720192319213600612851... is the root of the equation -1 + 36*d - 440*d^2 + 1936*d^3 = 0, c = 4.156714772910304733054135311449211887936035199917470476143821433373978333... .

A304943 Number of ways to write n as the sum of a positive tribonacci number (A000073) and a positive odd squarefree number.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 2, 2, 3, 4, 2, 4, 2, 4, 3, 4, 2, 4, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 1, 3, 3, 3, 3, 4, 2, 3, 4, 3, 4, 3, 2, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3
Offset: 1

Views

Author

Zhi-Wei Sun, May 22 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 3, 4, 6, 10, 11, 13, 29, 76, 1332, 25249.

Examples

			a(2) = 1 with 2 = 1 + 1, where 1 = A000073(2) = A000073(3) is a positive tribonacci number, and 1 is also odd and squarefree.
a(29) = 1 since 29 = A000073(8) + 5 with 5 odd and squarefree.
a(76) = 1 since 76 = A000073(6) + 3*23 with 3*23 odd and squarefree.
a(1332) = 1 since 1332 = A000073(7) + 1319 with 1319 odd and squarefree.
a(25249) = 1 since 25249 = A000073(4) + 25247 with 25247 odd and squarefree.
		

Crossrefs

Programs

  • Mathematica
    f[0]=0;f[1]=0;f[2]=1;
    f[n_]:=f[n]=f[n-1]+f[n-2]+f[n-3];
    QQ[n_]:=QQ[n]=Mod[n,2]==1&&SquareFreeQ[n];
    tab={};Do[r=0;k=3;Label[bb];If[f[k]>=n,Goto[aa]];If[QQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,100}];Print[tab]

A337285 a(n) = Sum_{i=1..n} (i-1)^2*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.

Original entry on oeis.org

0, 1, 5, 41, 297, 1522, 7606, 35830, 159734, 691175, 2911275, 11995471, 48573775, 193800376, 763577276, 2976338876, 11493413820, 44020618429, 167385941185, 632387189285, 2375420846885, 8876467428110, 33013780952786, 122261706093330, 451010242361106, 1657768413841731, 6073328651742855
Offset: 1

Views

Author

N. J. A. Sloane, Sep 12 2020

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073.)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1 -2*x+15*x^2+62*x^3-97*x^4+96*x^5+73*x^6-64*x^7-57*x^8-194*x^9-127*x^10-138*x^11 -55*x^12-12*x^13-9*x^14-4*x^15)/((1-x)*(1+x+x^2-x^3)^3*(1-3*x-x^2 -x^3)^3) )); // G. C. Greubel, Nov 22 2021
    
  • Mathematica
    T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; (* A000073 *)
    A337285[n_]:= Sum[j^2*T[j+1]^2, {j,0,n-1}];
    Table[A337285[n], {n, 40}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A337285(n): return sum( j^2*T(j+1)^2 for j in (0..n-1) )
    [A337285(n) for n in (1..40)] # G. C. Greubel, Nov 22 2021

Formula

From G. C. Greubel, Nov 22 2021: (Start)
a(n) = A337286(n) - 2*A337283(n) + A107239(n).
a(n) = Sum_{j=0..n-1} j^2*A000073(j+1)^2.
G.f.: x^2*(1 -2*x +15*x^2 +62*x^3 -97*x^4 +96*x^5 +73*x^6 -64*x^7 -57*x^8 -194*x^9 -127*x^10 -138*x^11 -55*x^12 -12*x^13 -9*x^14 -4*x^15)/((1-x)*(1 +x +x^2 -x^3)^3*(1 -3*x -x^2 -x^3)^3). (End)
Previous Showing 21-30 of 401 results. Next