cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 3327 results. Next

A258250 Primitive weird numbers (pwn) (A002975) whose abundance (A033880) is a power of 2 (A000079).

Original entry on oeis.org

70, 836, 4030, 5830, 7192, 7912, 10792, 17272, 45356, 83312, 91388, 113072, 254012, 388076, 786208, 1713592, 4145216, 4559552, 4632896, 9928792, 11547352, 13086016, 15126992, 17999992, 29465852, 29581424, 34869056, 37111168, 38546576, 74899952, 89283592, 95327216
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2015

Keywords

Comments

Number of terms < 10^n: 0, 1, 2, 6, 11, 15, 20, 32, 38, 48, 65, ..., .
Of the total of 499 terms < 10^11 which are pwn, only about 13% have an abundance which are powers of two.
Least term whose abundance has an exponent, e, of two > 1: 70, 836, 7192, 83312, 786208, 4145216, 98196134272, 4559552, 37111168, 22889716736, 141145802752, ?13?, 3307637248, ?15?, 154153326592, ..., .
Least term which has k prime factors, not counting multiplicity > 2: 70, 4030, 29465852, 44257207676, ..., .
Least term which has k prime factors, counting multiplicity > 2: 70, 836, 7192, 83312, 786208, 4145216, 37111168, 270788864, 2529837568, 22889716736, 141145802752, ..., .

Examples

			70 is in the sequence since sigma(70) = 144 which yields an abundance of 4 = 2^2.
		

Crossrefs

Programs

  • Mathematica
    (* copy the terms from A002975 and assign them to lst and then *) f[n_] := DivisorSigma[1, n] - 2n; lst[[#]] & /@ Select[ Range@ 695, IntegerQ@ Log2@ f@ lst[[#]] &]

Extensions

Corrected by Robert G. Wilson v, Dec 08 2015

A330990 Numbers whose inverse prime shadow (A181821) has its number of factorizations into factors > 1 (A001055) equal to a power of 2 (A000079).

Original entry on oeis.org

1, 2, 3, 4, 6, 15, 44
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.

Examples

			The factorizations of A181821(n) for n = 1, 2, 3, 4, 6, 15:
  ()  (2)  (4)    (6)    (12)     (72)
           (2*2)  (2*3)  (2*6)    (8*9)
                         (3*4)    (2*36)
                         (2*2*3)  (3*24)
                                  (4*18)
                                  (6*12)
                                  (2*4*9)
                                  (2*6*6)
                                  (3*3*8)
                                  (3*4*6)
                                  (2*2*18)
                                  (2*3*12)
                                  (2*2*2*9)
                                  (2*2*3*6)
                                  (2*3*3*4)
                                  (2*2*2*3*3)
		

Crossrefs

The same for prime numbers (instead of powers of 2) is A330993,
Factorizations are A001055, with image A045782.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with exactly 2^n factorizations is A330989.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],IntegerQ[Log[2,Length[facs[Times@@Prime/@nrmptn[#]]]]]&]

Formula

A001055(A181821(a(n))) = 2^k for some k >= 0.

A171449 Powers of 2 (A000079) with 1 changed to -1.

Original entry on oeis.org

-1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Paul Curtz, Dec 09 2009

Keywords

Crossrefs

Cf. A000079.

Programs

  • Mathematica
    Join[{-1}, 2^Range[50]] (* Paolo Xausa, Aug 27 2025 *)

Formula

From Stefano Spezia, Aug 26 2025: (Start)
G.f.: -(1 - 4*x)/(1 - 2*x).
E.g.f.: exp(2*x) - 2. (End)

Extensions

Edited by N. J. A. Sloane, Dec 17 2009

A087266 a(n) = gcd(2^n, pi(2^n)) = gcd(A000079(n), A007053(n)).

Original entry on oeis.org

1, 2, 4, 2, 1, 2, 1, 2, 1, 4, 1, 4, 4, 4, 8, 2, 1, 8, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 1, 1, 1, 4, 4, 2, 4, 4, 1, 1, 4, 2, 1, 1, 2, 2, 1, 8, 1, 4, 16, 1, 2, 4, 2, 4, 2, 1, 1, 8, 1, 4, 1, 1, 2, 16, 1, 1, 1, 1, 4, 1, 1, 4, 8, 1, 4, 4, 8, 4, 4, 2, 1, 1, 2, 4, 8, 16, 2
Offset: 1

Views

Author

Labos Elemer, Sep 16 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[2^n, PrimePi[2^n]], {n, 40}] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    a(n) = gcd(2^n, primepi(2^n)); \\ Michel Marcus, Mar 26 2017

Extensions

a(53)-a(92) from Amiram Eldar, Jun 09 2024

A152537 Convolution sequence: this sequence convolved with A000041 gives powers of 2, (A000079).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 18, 37, 74, 148, 296, 592, 1183, 2366, 4732, 9463, 18926, 37852, 75704, 151408, 302816, 605632, 1211265, 2422530, 4845060, 9690120, 19380241, 38760482, 77520964, 155041928, 310083856, 620167712, 1240335424, 2480670848, 4961341696, 9922683391
Offset: 0

Views

Author

Gary W. Adamson, Dec 06 2008

Keywords

Comments

Terms are very similar to those of A178841. - Georg Fischer, Mar 23 2019

Examples

			a(5) = 9 = 32 - 23 = (32 - ((7,5,3,2,1) dot (1,1,1,2,4)))
(1,1,2,3) convolved with (1,1,1,2) = 8, where (1,1,2,3...) = the first four partition numbers.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          2^n-add(combinat[numbpart](j)*a(n-j), j=1..n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 02 2025
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1-x^k, {k, 1, nmax}] / (1-2*x), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 02 2018 *)
  • PARI
    /* computation by definition (division of power series) */
    N=55;
    A000079=vector(N,n,2^(n-1));
    S000079=Ser(A000079);
    A000041=vector(N,n,numbpart(n-1));
    S000041=Ser(A000041);
    S152537=S000079/S000041;
    A152537=Vec(S152537) /* show terms */  /* Joerg Arndt, Feb 06 2011 */
    
  • PARI
    /* computation using power series eta(x) and 1/(1-2*x) */
    x='x+O('x^55);  S152537=eta(x)/(1-2*x);
    A152537=Vec(S152537) /* show terms */  /* Joerg Arndt, Feb 06 2011 */

Formula

Construct an array of rows such that n-th row = partial sums of (n-1)-th row of A010815: (1, -1, -1, 0, 0, 1, 0, 1,...).
A152537 = sums of antidiagonal terms of the array.
The sequence may be obtained directly from the following set of operations:
Our given sequence = A000041: (1, 1, 2, 3, 5, 7, 11,...). Delete the first "1" then consider (1, 2, 3, 5, 7, 11,...) as an operator Q which we write in reverse with 1,2,3,...terms for each operation. Letting R = the target sequence (1,2,4,8,...); we begin a(0) = 1, a(1) = 1, then perform successive operations of: "next term in (1,2,4,...) - dot product of Q*R" where Q is written right to left and R (the ongoing result) written left to right).
Examples: Given 4 terms Q, R, we have: (5,3,2,1) dot (1,1,1,2) = (5+3+2+2) = 12, which we subtract from 16, = 4.
Given 5 terms of Q,R and A152537, we have (7,5,3,2,1) dot (1,1,1,2,4) = 23 which is subtracted from 32 giving 9. Continue with analogous operations to generate the series.
a(n) = Sum_{j=0..n} A010815(j)*2^(n-j). G.f.: A000079(x)/A000041(x) = A010815(x)/(1-2x), where A......(x) denotes the g.f. of the associated sequence. - R. J. Mathar, Dec 09 2008
a(n) ~ c * 2^n, where c = A048651 = 0.28878809508660242127889972192923078... - Vaclav Kotesovec, Jun 02 2018
a(n) = 2^n - Sum_{j=1..n} A000041(j)*a(n-j). - Alois P. Heinz, Feb 02 2025

A264980 Base-3 reversal of 2^n: a(n) = A030102(A000079(n)).

Original entry on oeis.org

1, 2, 4, 8, 16, 64, 32, 184, 352, 704, 1408, 1880, 2824, 14032, 10328, 56128, 100576, 145784, 189472, 370304, 731752, 4388248, 2924096, 11175712, 15965704, 31930448, 63861880, 383165344, 255439712, 1021772344, 510875648, 2550188248, 5619691648, 9689861048, 17830350904, 79068724264, 34109913224, 192259976368, 133338241880
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Examples

			2^5 = 32 in base 3 = "1012" (= A007089(32)) as 1*27 + 1*3 + 2*1 = 32. 2^6 = 64 in base 3 = "2101" as 2*27 + 1*9 + 1*1 = 64. "1012" reversed is "2101" and vice versa, thus a(5) = 64 and a(6) = 32.
		

Crossrefs

Leftmost column of A265345.
Cf. also A036215.

Programs

  • PARI
    base(n) = {my(a=[n%3]); while(0Altug Alkan, Dec 29 2015

Formula

a(n) = A030102(A000079(n)) = A263273(A000079(n)).
a(0) = 1, for n >= 1, a(n) = A265342(a(n-1)).

A266186 a(n) = A266196(A000079(n)); indices of powers of 2 in A266195.

Original entry on oeis.org

1, 2, 4, 7, 12, 16, 25, 42, 50, 82, 104, 116, 201, 227, 243, 455, 477, 517, 1035, 1093, 1155, 1217, 2599, 2695, 4377, 4491, 4773, 4947, 5137, 13409, 13537, 14125, 14299, 14631, 15123, 34005, 34447, 34781, 36017, 36867, 37289, 37913, 155106, 155700, 157254
Offset: 0

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

Very likely also the positions of records in A264982.

Crossrefs

Formula

a(n) = A266196(A000079(n)).

Extensions

More terms from Rémy Sigrist, Oct 04 2022

A269373 Permutation of natural numbers: a(1) = 1, a(n) = A000079(A260438(n+1)-1) * ((2 * a(A260439(n+1))) - 1).

Original entry on oeis.org

1, 2, 3, 6, 5, 4, 11, 8, 9, 10, 7, 16, 21, 32, 15, 22, 17, 12, 19, 64, 13, 18, 31, 128, 41, 24, 63, 14, 29, 256, 43, 512, 33, 42, 23, 1024, 37, 20, 127, 30, 25, 2048, 35, 48, 61, 34, 255, 4096, 81, 8192, 47, 38, 125, 96, 27, 40, 57, 26, 511, 44, 85, 16384, 1023, 62, 65, 32768, 83, 65536, 45, 82, 2047, 131072, 73, 262144, 39
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2016

Keywords

Crossrefs

Inverse: A269374.
Cf. also A249813, A269383.

Formula

a(1) = 1, a(n) = A000079(A260438(n+1)-1) * ((2 * a(A260439(n+1))) - 1).
Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A133806 Alternate terms of A131708 and A000079.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 3, 8, 5, 16, 10, 32, 21, 64, 43, 128, 86, 256, 171, 512, 341, 1024, 682, 2048, 1365, 4096, 2731, 8192, 5462, 16384, 10923, 32768, 21845, 65536, 43690, 131072, 87381, 262144, 174763, 524288, 349526, 1048576, 699051, 2097152
Offset: 0

Views

Author

Paul Curtz, Jan 06 2008

Keywords

Crossrefs

Cf. A000079.

Formula

G.f.: -x*(1+x-x^2-x^3+x^4) / ( (2*x^2-1)*(x^4-x^2+1) ). - R. J. Mathar, Jul 16 2015

A153237 a(n) = A000079(n) - A153130(n).

Original entry on oeis.org

0, 0, 0, 0, 9, 27, 63, 126, 252, 504, 1017, 2043, 4095, 8190, 16380, 32760, 65529, 131067, 262143, 524286, 1048572, 2097144, 4194297, 8388603, 16777215, 33554430, 67108860, 134217720, 268435449, 536870907, 1073741823, 2147483646
Offset: 0

Views

Author

Paul Curtz, Dec 21 2008

Keywords

Programs

  • Mathematica
    LinearRecurrence[{3,-2,-1,3,-2},{0,0,0,0,9},40] (* Harvey P. Dale, Dec 26 2021 *)

Formula

a(n) = 9 *A153234(n). G.f. 9*x^4 / ( (x-1)*(2*x-1)*(1+x)*(x^2-x+1) ). - R. J. Mathar, Dec 17 2012

Extensions

Definition corrected by Omar E. Pol, Dec 24 2008
Edited by N. J. A. Sloane, Dec 31 2008
Previous Showing 11-20 of 3327 results. Next