A091403 Numbers n such that genus of group Gamma_0(n) is 1.
11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49
Offset: 1
References
- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.
Programs
-
Mathematica
a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}]; a86[n_] := a86[n] = Product[{p, e} = pe; Which[p == 1 || p == 3 && e == 1, 1, p == 3 && e > 1, 0, Mod[p, 3] == 1, 2, Mod[p, 3] == 2, 0, True, a86[p^e]], {pe, FactorInteger[n]}]; a1615[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; a1616[n_] := Sum[EulerPhi[GCD[ d, n/d]], {d, Divisors[n]}]; a1617[n_] := 1 + a1615[n]/12 - a89[n]/4 - a86[n]/3 - a1616[n]/2; Position[Array[a1617, 100], 1] // Flatten (* Jean-François Alcover, Oct 18 2018 *)
Formula
Numbers n such that A001617(n) = 1.
Comments