cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A000345 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 5, 22, 71, 186, 427, 888, 1704, 3053, 5203, 8476, 13318, 20265, 29946, 43254, 61171, 84832, 115713, 155382, 205779, 269065, 347906, 445001, 563685, 707637, 881042, 1088339, 1335019, 1626233, 1968701, 2369320, 2835467, 3375820, 3999234, 4715586, 5535965, 6472005, 7536195, 8742102, 10105163, 11640190, 13365254, 15298155, 17458190, 19866739, 22546131, 25519743, 28813410, 32453730, 36469433, 40890672, 45749944, 51081147, 56919908, 63304577, 70275008, 77873381, 86145156, 95134772, 104893757, 115473250, 126926418, 139311512, 152687434, 167115830, 182663928, 199398527, 217392226, 236717247, 257454630, 279683011, 303488723, 328959602, 356186407
Offset: 3

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(1/2) + x_2^(1/2) + x_3^(1/2) <= n for any three integers 1 <= x_1 <= x_2 <= x_3. - R. J. Mathar, Jul 03 2009

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A000347 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 5, 24, 84, 251, 653, 1543, 3341, 6763, 12879, 23446, 40883, 68757, 111976, 177358, 273926, 413784, 612430, 889959, 1271709, 1789841, 2483779, 3402623, 4605954, 6166614, 8171174, 10724604, 13950011, 17994136, 23029141, 29255902, 36908235, 46257694, 57616522, 71344257, 87853381, 107612397
Offset: 4

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(1/2) + x_2^(1/2) + x_3^(1/2) + x_4^(1/2) <= n for any four integers 1 <= x_1 <= x_2 <= x_3 <= x_4. - R. J. Mathar, Jul 03 2009

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A000348 Number of ways to pair up {1^2, 2^2, ..., (2n)^2 } so sum of each pair is prime.

Original entry on oeis.org

1, 1, 2, 4, 12, 9, 72, 160, 428, 2434, 3011, 10337, 126962, 264182, 783550, 5004266, 34340141, 176302123, 1188146567, 4457147441, 7845512385, 132253267889, 1004345333251, 3865703506342, 40719018858150, 213982561376958, 1266218151414286, 10976172953868304, 59767467676582641, 512279001476451101, 6189067229056357433
Offset: 1

Views

Author

S. J. Greenfield (greenfie(AT)math.rutgers.edu)

Keywords

Crossrefs

Cf. A000341.

Programs

  • Mathematica
    a[n_] := Permanent[Table[Boole[PrimeQ[(2*i)^2 + (2*j - 1)^2]], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 22}] (* Jean-François Alcover, Jan 06 2016, after T. D. Noe *)
  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;nc=0;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;nc+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(n=1,24,a=matrix(n,n,i,j,isprime((2*i)^2+(2*j-1)^2));print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007

Formula

a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether (2i)^2+(2j-1)^2 is prime or composite, respectively. - T. D. Noe, Feb 10 2007

Extensions

a(11)-a(16) from David W. Wilson
a(17)-a(22) from T. D. Noe, Feb 10 2007
a(23)-a(24) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
More terms from Sean A. Irvine, Nov 14 2010

A035936 Number of squares in (n^3, (n+1)^3 ].

Original entry on oeis.org

1, 1, 3, 3, 3, 3, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 11, 10, 11, 10, 11, 10, 11, 11, 11, 12, 11, 11, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 13, 12, 13, 13, 13, 13, 13, 13, 14, 13, 14, 13, 14
Offset: 0

Views

Author

Keywords

Comments

There are never exactly two squares between two consecutive cubes. - Vladimir Pletser, Jan 12 2021

Examples

			a(3)=3 since 3^3 < 6^2, 7^2, 8^2 <= 4^3.
		

Crossrefs

Cf. A000093, A000290 (squares), A000578 (cubes).

Programs

Formula

a(n) = A000093(n+1)-A000093(n) (first differences of A000093). - Henry Bottomley, Aug 31 2000

A060903 a(n) = floor(6*n*sqrt(n)/Pi^2).

Original entry on oeis.org

0, 0, 1, 3, 4, 6, 8, 11, 13, 16, 19, 22, 25, 28, 31, 35, 38, 42, 46, 50, 54, 58, 62, 67, 71, 75, 80, 85, 90, 94, 99, 104, 110, 115, 120, 125, 131, 136, 142, 148, 153, 159, 165, 171, 177, 183, 189, 195, 202, 208, 214, 221, 227, 234, 241, 247, 254, 261, 268, 275, 282
Offset: 0

Views

Author

Henry Bottomley, May 05 2001

Keywords

Comments

Conjecture: the sum of the divisors of n is less than a(n) for n exceeding 12. - Robert G. Wilson v, May 14 2014

Crossrefs

Programs

  • Mathematica
    f[n_] := Floor[6 n^(3/2)/Pi^2]; Array[f, 61, 0] (* Robert G. Wilson v, May 14 2014 *)
  • PARI
    { default(realprecision, 100); t=Pi^2/6; for (n=0, 1000, write("b060903.txt", n, " ", n*sqrt(n)\t); ) } \\ Harry J. Smith, Jul 14 2009

Formula

a(n) = A000203(n) + A058208(n).
a(n) = floor(6*n^(3/2)/Pi^2).

A255616 Table read by antidiagonals, T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 4, 5, 4, 1, 1, 2, 5, 8, 9, 5, 1, 1, 2, 6, 11, 16, 15, 8, 1, 1, 2, 7, 14, 25, 32, 27, 11, 1, 1, 3, 8, 18, 36, 55, 64, 46, 16, 1, 1, 3, 9, 22, 49, 88, 125, 128, 81, 22, 1, 1, 3, 10, 27, 64, 129, 216, 279, 256, 140, 32, 1, 1, 3, 11, 31, 81, 181, 343, 529, 625, 512, 243, 45, 1
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 28 2015

Keywords

Examples

			See table in the links.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Floor[Sqrt[k^n]]; Table[T[k, n + 1 - k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    {for(i=1,20,for(n=0,i-1,a=floor(sqrt((i-n)^n));print1(a,", ")))}

Formula

T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Extensions

Terms a(81) onward added by G. C. Greubel, Dec 30 2017

A000333 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 5, 15, 40, 98, 237, 534, 1185, 2554, 5391, 11117, 22556, 44858, 88000, 170107, 324547, 611755, 1140382, 2103554, 3842826, 6955918, 12483075, 22220002, 39248230, 68819781, 119839422, 207304370, 356356801, 608901907, 1034452712, 1747764522, 2937370605, 4911675955, 8173032301
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of solutions to the inequality sum_{i=1,2,3...} x_i^(1/2)<=n under the constraint that x_i are integers where 1<=x_1<=x_2<=x_3<=x_4<=... [From R. J. Mathar, Jul 03 2009]

Examples

			a(n=3)=15 counts the solutions 1^(1/2)<=3, 1^(1/2)+1^(1/2)<=3, 1^(1/2)+1^(1/2)+1^(1/2)<=3, 1^(1/2)+2^(1/2)<=3, 1^(1/2)+3^(1/2)<=3, 1^(1/2)+4^(1/2)<=3, 2^(1/2)<=3, 2^(1/2)+2^(1/2)<=3, 3^(1/2)<=3, 4^(1/2)<=3,.., 8^(1/2)<=3 and 9^(1/2)<=3. [From _R. J. Mathar_, Jul 03 2009]
		

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

2 more terms from R. J. Mathar, Jul 03 2009
More terms from Sean A. Irvine, Nov 14 2010

A063038 a(n) = floor(n*sqrt(n)) - d(n), where d(n) is the number of divisors function.

Original entry on oeis.org

0, 0, 3, 5, 9, 10, 16, 18, 24, 27, 34, 35, 44, 48, 54, 59, 68, 70, 80, 83, 92, 99, 108, 109, 122, 128, 136, 142, 154, 156, 170, 175, 185, 194, 203, 207, 223, 230, 239, 244, 260, 264, 279, 285, 295, 307, 320, 322, 340, 347, 360, 368, 383, 388, 403, 411, 426, 437
Offset: 1

Views

Author

Jason Earls, Aug 03 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[n*Sqrt[n]] - DivisorSigma[0, n], {n, 50}] (* Wesley Ivan Hurt, Jun 09 2014 *)
  • PARI
    j=[]; for(n=1,100,j=concat(j,floor(n*sqrt(n))-numdiv(n))); j

Formula

a(n) = A000093(n) - A000005(n). - Michel Marcus, Apr 13 2024

A259447 Triangle read by rows arising from enumeration of partitions into non-integral powers.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 8, 7, 2, 1, 11, 15, 8, 2, 1, 14, 28, 19, 8, 2, 1, 18, 45, 41, 21, 8, 2, 1, 22, 70, 78, 48, 22, 8, 2, 1, 27, 100, 134, 99, 52, 22, 8, 2, 1, 31, 138, 218, 186, 111, 53, 22, 8, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 27 2015

Keywords

Examples

			Triangle begins:
1,
2,1,
5,2,1,
8,7,2,1,
11,15,8,2,1,
14,28,19,8,2,1,
18,45,41,21,8,2,1,
22,70,78,48,22,8,2,1,
27,100,134,99,52,22,8,2,1,
31,138,218,186,111,53,22,8,2,1,
...
		

Crossrefs

Columns include A000093, A000148, A000158, A000169.

A259448 Triangle read by rows arising from enumeration of partitions into non-integral powers.

Original entry on oeis.org

1, 4, 1, 9, 5, 1, 16, 18, 5, 1, 25, 45, 22, 5, 1, 36, 100, 71, 24, 5, 1, 49, 185, 186, 84, 24, 5, 1, 64, 323, 427, 251, 90, 24, 5, 1, 81, 522, 888, 653, 288, 92, 24, 5, 1, 100, 804, 1704, 1543, 811, 306, 93, 24, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 27 2015

Keywords

Examples

			Triangle begins:
1,
4,1,
9,5,1,
16,18,5,1,
25,45,22,5,1,
36,100,71,24,5,1,
49,185,186,84,24,5,1,
64,323,427,251,90,24,5,1,
81,522,888,653,288,92,24,5,1,
100,804,1704,1543,811,306,93,24,5,1,
...
		

Crossrefs

Columns include A000339, A000345, A000347.
Previous Showing 31-40 of 43 results. Next