cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 4208 results. Next

A126984 Expansion of 1/(1+2*x*c(x)), c(x) the g.f. of Catalan numbers A000108.

Original entry on oeis.org

1, -2, 2, -4, 2, -12, -12, -72, -190, -700, -2308, -8120, -28364, -100856, -360792, -1301904, -4727358, -17268636, -63405012, -233885784, -866327748, -3220976616, -12016209192, -44966763504, -168750724428, -634935132312, -2394717424552, -9051945482032
Offset: 0

Views

Author

Philippe Deléham, Mar 21 2007

Keywords

Comments

Hankel transform is (-2)^n.
Hankel transform omitting first term is (-2)^n omitting first term. Hankel transform omitting first two terms is 2*(-1)^n*A014480(n). - Michael Somos, May 16 2022

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(2-Sqrt(1-4*x)) )); // G. C. Greubel, May 28 2019
    
  • Maple
    c:=(1-sqrt(1-4*x))/2/x: ser:=series(1/(1+2*x*c),x=0,32): seq(coeff(ser,x,n),n=0..30); # Emeric Deutsch, Mar 24 2007
  • Mathematica
    CoefficientList[Series[1/(2-Sqrt[1-4*x]), {x,0,30}], x] (* G. C. Greubel, May 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(2-sqrt(1-4*x))) \\ G. C. Greubel, May 28 2019
    
  • Sage
    (1/(2-sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019

Formula

a(n) = Sum_{k=0..n} A039599(n,k)*(-3)^k.
G.f.: 1/(2 - sqrt(1-4*x)). - G. C. Greubel, May 28 2019
(-1)^n*a(n) = A268600(n) - A268601(n). - Michael Somos, May 16 2022
D-finite with recurrence 3*n*a(n) +2*(-4*n+9)*a(n-1) +8*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
a(n) = Sum_{k = 0..n} A009766(n-1, k)*(-2)^(n-k) for n >= 1. - Peter Bala, Jun 18 2025

Extensions

Corrected and extended by Emeric Deutsch, Mar 24 2007

A141223 Expansion of 1/(sqrt(1-4*x)*(1-3*x*c(x))), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 24, 113, 526, 2430, 11166, 51105, 233190, 1061510, 4822984, 21879786, 99135076, 448707992, 2029215114, 9170247393, 41416383366, 186957126702, 843575853984, 3804927658878, 17156636097156, 77339426905812, 348553445817084, 1570548863858778, 7075531788285276
Offset: 0

Views

Author

Paul Barry, Jun 14 2008

Keywords

Comments

Binomial transform of A126932. Hankel transform is (-1)^n.
Row sums of the Riordan matrix (1/(1-4*x),(1-sqrt(1-4*x))/(2*sqrt(1-4*x))) (A188481). - Emanuele Munarini, Apr 01 2001

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3-12x+Sqrt[1-4x])/(4-34x+72x^2),{x,0,100}],x] (* Emanuele Munarini, Apr 01 2011 *)
  • Maxima
    makelist(sum(binomial(n+k,k)*3^(n-k),k,0,n),n,0,12); /* Emanuele Munarini, Apr 01 2011 */

Formula

a(n) = Sum_{k=0..n} C(2*n-k,n-k)*3^k.
From Emanuele Munarini, Apr 01 2011: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-3*x)). [Corrected by Seiichi Manyama, Aug 03 2025]
a(n) = 3^(2*n+1)/2^(n+2) + (1/4)*Sum_{k=0..n} binomial(2*k,k)*(9/2)^(n-k).
D-finite with recurrence: 2*(n+2)*a(n+2) - (17*n+30)*a(n+1) + 18*(2*n+3)*a(n) = 0.
G.f.: (3-12*x+sqrt(1-4*x))/(4-34*x+72*x^2). (End)
G.f.: (1/(1-4*x)^(1/2)+3)/(4-18*x) = (2 + x/(Q(0)-2*x))/(2-9*x) where Q(k) = 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 18 2013
a(n) ~ 3^(2*n + 1) / 2^(n + 1). - Vaclav Kotesovec, Sep 15 2021
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k). - Seiichi Manyama, Aug 03 2025
a(n) = 3^(2*n+1)*2^(-n-1) - binomial(2*n+1, n)*(hypergeom([1, -1-n], [1+n], -1/2) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k). - Seiichi Manyama, Aug 07 2025

A158832 Main diagonal in the array A158825 of coefficients of successive iterations of x*C(x), where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 2, 12, 110, 1330, 19852, 351792, 7209036, 167607066, 4357308098, 125219900520, 3941126688798, 134808743674176, 4979127855477336, 197480359402576304, 8370550907396970684, 377599345119560766534, 18061714498169627460982
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms A158831 into this sequence, where A158831 is the previous diagonal in A158825.
Triangle A158835 transforms this sequence into A158833, the next diagonal in A158825.

Examples

			Array of coefficients in the i-th iteration of x*Catalan(x):
(1),1,2,5,14,42,132,429,1430,4862,16796,58786,208012,...;
1,(2),6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,3,(12),54,260,1310,6824,36478,199094,1105478,6227712,...;
1,4,20,(110),640,3870,24084,153306,993978,6544242,43652340,...;
1,5,30,195,(1330),9380,67844,500619,3755156,28558484,...;
1,6,42,315,2464,(19852),163576,1372196,11682348,100707972,...;
1,7,56,476,4200,38052,(351792),3305484,31478628,303208212,...;
1,8,72,684,6720,67620,693048,(7209036),75915708,807845676,...;
1,9,90,945,10230,113190,1273668,14528217,(167607066),...;
1,10,110,1265,14960,180510,2212188,27454218,344320262,(4357308098),...; ...
where terms in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{x, F, G}, F = InverseSeries[x - x^2 + O[x]^(n+2)]; G = x; For[i = 1, i <= n, i++, G = (F /. x -> G)]; Coefficient[G, x, n]];
    Array[a, 18] (* Jean-François Alcover, Jul 13 2018, from PARI *)
  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+2))),G=x); for(i=1,n,G=subst(F,x,G));polcoeff(G,n)}

A161629 E.g.f. satisfies: A(x) = exp( x*Catalan(x*A(x)) ), where Catalan(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 25, 349, 6821, 171421, 5265625, 191160201, 8007548617, 380157603481, 20171371753061, 1182973489103869, 75984447924612397, 5305029326492409333, 400014338565211619761, 32396515980658185762961
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 349*x^4/4! + 6821*x^5/5! +...
log(A(x))/x = 1 + x*A(x) + 2*x^2*A(x)^2 + 5*x^3*A(x)^3 + 14*x^4*A(x)^4 +...+ A000108(n)*x^n*A(x)^n +...
log(A(x))/x = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...+ A213644(n)*x^n/n! +...
log(A(x)) = x + 2*x^2/2! + 18*x^3/3! + 252*x^4/4! + 4940*x^5/5! +...+ A213643(n)*x^n/n! +...
Ordinary Generating Function:
O.g.f.: 1 + x + 3*x^2 + 25*x^3 + 349*x^4 + 6821*x^5 + 171421*x^6 +...
O.g.f.: 1 + x/(1-x) + 2*x^2/(1-2*x)^3 + 6*2!*x^3/(1-3*x)^5 + 20*3!*x^4/(1-4*x)^7 + 70*4!*x^5/(1-5*x)^9 + 252*5!*x^6/(1-6*x)^11 +...+ (2*n-2)!/(n-1)!*x^n/(1-n*x)^(2*n-1) +...
		

Crossrefs

Cf. A213643 (log), A214689, A000108.

Programs

  • Mathematica
    Flatten[{1,Table[Sum[n!/k!*(n-k+1)^(k-1)*Binomial[2*n-k, n-k]*k/(2*n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
  • PARI
    {a(n,m=1)=if(n==0,1,sum(k=0,n,n!/k!*m*(m+n-k)^(k-1)*binomial(2*n-k,n-k)*k/(2*n-k)))}
    
  • PARI
    {a(n,m=1)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp((1-sqrt(1-4*x*A))/(2*A)));n!*polcoeff(A^m,n)}
    
  • PARI
    /* O.g.f.: */
    {a(n)=polcoeff(1+sum(m=1, n, (2*m-2)!/(m-1)!*x^m/(1-m*x+x*O(x^n))^(2*m-1)), n)}

Formula

E.g.f.: A(x) = exp(F(x)) where F(x) = x + F(x)^2*exp(F(x)) is the e.g.f. of A213643.
E.g.f.: A(x) = Sum_{n>=0} a(n)*x^n/n!, where
a(n) = Sum_{k=0..n} n! * (n-k+1)^(k-1)/k! * C(2*n-k,n-k)*k/(2*n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} n! * m*(n-k+m)^(k-1)/k! * C(2*n-k,n-k)*k/(2*n-k).
...
O.g.f.: A(x) = 1 + Sum_{n>=1} (2*n-2)!/(n-1)! * x^n/(1 - n*x)^(2*n-1).
a(n) ~ n^(n-1) * sqrt((r*s^3*(1-6*r*s+8*r^2*s^2)) / (1 - (-2+8*r+r^2)*s + 4*r*(-4+4*r+r^2)*s^2 + 4*r^2*(8+r)*s^3)) / (exp(n) * r^n), where s = 1.370489293947401403417767032... is the root of the equation log(s)*(1-s*log(s)) + 2*(1+s) = (1+2*s) * sqrt((1+s)/s), and r = log(s)*(1-s*log(s)) = 0.179036084709909351719214... - Vaclav Kotesovec, Feb 26 2014

A355341 G.f.: A(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

2, 1, -2, 1, -3, 0, 1, -4, 2, 0, 1, -5, 5, 0, 0, 1, -6, 9, -2, 0, 0, 1, -7, 14, -7, 0, 0, 0, 1, -8, 20, -16, 2, 0, 0, 0, 1, -9, 27, -30, 9, 0, 0, 0, 0, 1, -10, 35, -50, 25, -2, 0, 0, 0, 0, 1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0, 1, -12, 54, -112, 105, -36, 2, 0, 0, 0, 0, 0, 1, -13, 65, -156, 182, -91, 13, 0, 0, 0, 0, 0, 0, 1, -14, 77, -210, 294, -196, 49, -2, 0, 0, 0, 0, 0, 0, 1, -15, 90, -275, 450, -378, 140, -15, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2022

Keywords

Examples

			G.f.: A(x) = 2 + x - 2*x^2 + x^3 - 3*x^4 + x^6 - 4*x^7 + 2*x^8 + x^10 - 5*x^11 + 5*x^12 + x^15 - 6*x^16 + 9*x^17 - 2*x^18 + x^21 - 7*x^22 + 14*x^23 - 7*x^24 + x^28 - 8*x^29 + 20*x^30 - 16*x^31 + 2*x^32 + x^36 - 9*x^37 + 27*x^38 - 30*x^39 + 9*x^40 + x^45 - 10*x^46 + 35*x^47 - 50*x^48 + 25*x^49 - 2*x^50 + ...
such that
A(x) = ... + x^6/C(x)^4 + x^3/C(x)^3 + x/C(x)^2 + 1/C(x) + 1 + x*C(x) + x^3*C(x)^2 + x^6*C(x)^3 + x^10*C(x)^4 + ...
where
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + 16796*x^10 + ... + A000108(n)*x^n + ...
The coefficients of x^k in x^(n*(n+1)/2) * (C(x)^n + 1/C(x)^(n+1)) begin:
n = 0: [2, -1, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, ...];
n = 1: [0,  2, -1,  1,  3,   9,  28,   90,  297,  1001,  3432,  11934, ...];
n = 2: [0,  0,  0,  2, -1,   5,  13,   39,  123,   401,  1340,   4565, ...];
n = 3: [0,  0,  0,  0,  0,   0,   2,   -1,   11,    28,    89,    293, ...];
n = 4: [0,  0,  0,  0,  0,   0,   0,    0,    0,     0,     2,     -1, ...]; ...
forming a table the column sums of which yield this sequence.
The g.f. may also be written as
A(x) = 2 + (-2*x + 1)*x + (-3*x + 1)*x^3 + (2*x^2 - 4*x + 1)*x^6 + (5*x^2 - 5*x + 1)*x^10 + (-2*x^3 + 9*x^2 - 6*x + 1)*x^15 + (-7*x^3 + 14*x^2 - 7*x + 1)*x^21 + (2*x^4 - 16*x^3 + 20*x^2 - 8*x + 1)*x^28 + (9*x^4 - 30*x^3 + 27*x^2 - 9*x + 1)*x^36 + (-2*x^5 + 25*x^4 - 50*x^3 + 35*x^2 - 10*x + 1)*x^45 + ...
compare to
(1 - 2*y*x)/(1-x + y*x^2) = 1 + (-2*y + 1)*x + (-3*y + 1)*x^2 + (2*y^2 - 4*y + 1)*x^3 + (5*y^2 - 5*y + 1)*x^4 + (-2*y^3 + 9*y^2 - 6*y + 1)*x^5 + (-7*y^3 + 14*y^2 - 7*y + 1)*x^6 + (2*y^4 - 16*y^3 + 20*y^2 - 8*y + 1)*x^7 + (9*y^4 - 30*y^3 + 27*y^2 - 9*y + 1)*x^8 + (-2*y^5 + 25*y^4 - 50*y^3 + 35*y^2 - 10*y + 1)*x^9 + ...
The terms of this sequence may be written as a triangle (see triangle A244422):
2,
1, -2,
1, -3, 0,
1, -4, 2, 0,
1, -5, 5, 0, 0,
1, -6, 9, -2, 0, 0,
1, -7, 14, -7, 0, 0, 0,
1, -8, 20, -16, 2, 0, 0, 0,
1, -9, 27, -30, 9, 0, 0, 0, 0,
1, -10, 35, -50, 25, -2, 0, 0, 0, 0,
1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0,
1, -12, 54, -112, 105, -36, 2, 0, 0, 0, 0, 0,
1, -13, 65, -156, 182, -91, 13, 0, 0, 0, 0, 0, 0,
1, -14, 77, -210, 294, -196, 49, -2, 0, 0, 0, 0, 0, 0,
1, -15, 90, -275, 450, -378, 140, -15, 0, 0, 0, 0, 0, 0, 0,
1, -16, 104, -352, 660, -672, 336, -64, 2, 0, 0, 0, 0, 0, 0, 0,
...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A,C = serreverse(x-x^2 +x^2*O(x^n))/x);
    A = sum(m=-n-1,n+1, x^(m*(m+1)/2) * C^m); polcoeff(A,n)}
    for(n=0,70,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A,C = serreverse(x-x^2 +x^2*O(x^n))/x, M = sqrtint(2*n+9));
    A = sum(m=0,M, x^(m*(m+1)/2) * (C^m + 1/C^(m+1))); polcoeff(A,n)}
    for(n=0,70,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n is equal to the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
(1) A(x) = 1/C(x) * Product_{n>=1} (1 + x^n/C(x)) * (1 + x^(n-1)*C(x)) * (1-x^n), by the Jacobi triple product identity.
(2) A(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^n.
(3) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * (C(x)^n + 1/C(x)^(n+1)).
(4) A(x) = 1 + Sum_{n>=0} x^(n*(n+1)/2) * ( [y^n] (1 - 2*y*x)/(1-y + x*y^2) ).
(5) A(x) = 1 + Sum_{n>=1} x^(n*(n-1)/2) * Sum_{k=0..n} A244422(n,k) * x^k.

A381817 Expansion of (1/x) * Series_Reversion( x * (1-x) / C(x) ), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 8, 41, 239, 1507, 10016, 69123, 490676, 3560150, 26285896, 196862679, 1491921261, 11420072162, 88166571504, 685724643699, 5367842153463, 42259058503891, 334373741310812, 2657683458672907, 21209720057079565, 169886023881795700, 1365290865904393560
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*2*x/(1-sqrt(1-4*x)))/x)

Formula

G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(2*n-k,n-k)/(n+2*k+1).
D-finite with recurrence 270*n*(n-1)*(2*n+1)*(4886806261*n -12359738163)*(n+1)*a(n) +36*n*(n-1)*(73302093915*n^3 -4013759132354*n^2 +11228589268975*n -4731576382254)*a(n-1) -6*(n-1)*(78948725805818*n^4 -721014042837927*n^3 +2114039183987386*n^2 -2373558292742247*n +834825525358878)*a(n-2) +(3703469060597227*n^5 -40768871113864973*n^4 +173554734639707111*n^3 -360669855974794759*n^2 +370762762031723274*n -153683482287306096)*a(n-3) +6*(-2284895393144753*n^5 +28245013068548213*n^4 -138588666805096327*n^3 +341806596235129383*n^2 -433338949590369664*n +232825263110939100)*a(n-4) +10*(5*n-22)*(5*n-21) *(5*n-19)*(5*n-18)*(1032930487477*n -4077934418263)*a(n-5)=0. - R. J. Mathar, Mar 10 2025

A067336 a(0)=1, a(1)=2, a(n) = a(n-1)*9/2 - Catalan(n-1) where Catalan(n) = binomial(2n,n)/(n+1) = A000108(n).

Original entry on oeis.org

1, 2, 8, 34, 148, 652, 2892, 12882, 57540, 257500, 1153888, 5175700, 23231864, 104335376, 468766292, 2106773874, 9470787588, 42583186476, 191494694352, 861248485884, 3873850923288, 17425765034376, 78391476387672, 352670161180884, 1586672665700328, 7138737091504152
Offset: 0

Views

Author

Henry Bottomley, Jan 15 2002

Keywords

Comments

Note that while a(n) is even (for n > 0), it is a multiple of 4 except when n = 2^m-1, i.e., when Catalan(n) is odd.
Result of applying the Riordan matrix ((1+sqrt(1-4*x))/2, (1-sqrt(1-4*x))/2) (inverse of (1/(1-x), x*(1-x))) to 3^n. - Paul Barry, Mar 12 2005
Hankel transform is A001787(n+1). - Paul Barry, Mar 15 2010

Examples

			a(2) =   2*9/2 -  1 =   8;
a(3) =   8*9/2 -  2 =  34;
a(4) =  34*9/2 -  5 = 148;
a(5) = 148*9/2 - 14 = 652.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+Sqrt[1-4*x])/(3*Sqrt[1-4*x]-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

a(n) = A067337(2n, n).
G.f.: (1+sqrt(1-4*x))/(3*sqrt(1-4*x)-1). - Paul Barry, Mar 12 2005
a(n) = Sum_{k=0..n} A039599(n,k)*A001045(k+1). - Philippe Deléham, Jun 10 2007
G.f.: (1-x*c(x))/(1-3*x*c(x)), where c(x) is the g.f. of A000108. - Paul Barry, Mar 15 2010
Conjecture: 2*n*a(n) + (-17*n+12)*a(n-1) + 18*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
The above conjecture is true. - Nguyen Tuan Anh, Mar 15 2025
G.f.: 1 + 2*x/(Q(0)-3*x), where Q(k) = 2*x + (k+1)/(2*k+1) - 2*x*(k+1)/(2*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) ~ 3^(2*n-1) / 2^n. - Vaclav Kotesovec, Feb 13 2014

A073191 Number of separate orbits/cycles to which the Catalan bijections A072796/A072797 partition each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 96, 305, 1007, 3389, 11636, 40498, 142714, 507870, 1823040, 6591885, 23989419, 87795473, 322922652, 1193058230, 4425547638, 16475756738, 61539293424, 230548633954, 866095934598, 3261868457698, 12313423931624
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Occurs for first time in A073201 as row 1.

Formula

a(n) = (A000108(n)+A073190(n))/2.

A073193 Number of separate orbits/cycles to which the Catalan bijection A057508 partitions each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Original entry on oeis.org

1, 1, 2, 4, 11, 30, 93, 292, 965, 3238, 11126, 38708, 136486, 485820, 1744677, 6310584, 22973793, 84103302, 309429066, 1143487428, 4242631626, 15798011604, 59018856522, 221143860936, 830895360978, 3129747395548, 11816242209260
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Occurs for first time in A073201 as row 168.

Formula

a(n) = (A000108(n)+A073192(n))/2

A076026 Expansion of g.f.: (1-4*x*C)/(1-5*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 6, 37, 230, 1434, 8952, 55917, 349374, 2183230, 13643972, 85270626, 532926716, 3330739972, 20816939100, 130105200765, 813155081070, 5082210417270, 31763782696740, 198523522444950, 1240771573465140, 7754820693127020, 48467623215477120, 302922622226091090
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 6 colors and those at a higher level come in 2 colors. Example: a(4)=230 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 6^3 = 216 paths of shape HHH, 6 paths of shape HUD, 6 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (2- 4*Sqrt(1-4*x))/(3-5*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
    
  • Mathematica
    CoefficientList[Series[(2-4*Sqrt[1-4*x])/(3-5*Sqrt[1-4*x]), {x, 0, 30}], x] (* Vaclav Kotesovec, Dec 09 2013 *)
    Flatten[{1,Table[FullSimplify[(2*n)!*Hypergeometric2F1Regularized[1, n+1/2, n+2, 16/25] / (25*n!) + 3*5^(2*n-1)/4^(n+1)], {n,1,30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((2-4*sqrt(1-4*x))/(3-5*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
    
  • Sage
    ((2-4*sqrt(1-4*x))/(3-5*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019

Formula

a(n+1) = Sum_{k=0..n} A039598(n,k)*4^k. - Philippe Deléham, Mar 21 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A015521(k), for n >= 1. - Philippe Deléham, Nov 22 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n >= 1, a(n+1)=(-1)^n*charpoly(A,-5). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
6, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 4*n*a(n) = (41*n-24)*a(n-1) - 50*(2*n-3)*a(n-2). - Vaclav Kotesovec, Dec 09 2013
a(n) ~ 3*5^(2*n-1)/4^(n+1). - Vaclav Kotesovec, Dec 09 2013
O.g.f. A(x) = (1 - *Sum_{n >= 1} binomial(2*n,n)*x^n)/(1 - (3/2)*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
Previous Showing 61-70 of 4208 results. Next