cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 349 results. Next

A185425 Bisection of A185424. Numerators of even-indexed generalized Bernoulli numbers associated with the zigzag numbers A000111.

Original entry on oeis.org

1, 1, 19, 253, 3319, 222557, 422152729, 59833795, 439264083023, 76632373664299, 4432283799315809, 317829581058418253, 1297298660169509319229, 696911453333335463719, 28877308885785768720478751, 157040990105362922778773747849
Offset: 0

Views

Author

Peter Bala, Feb 18 2011

Keywords

Comments

Let E(t) = sec(t)+tan(t) denote the generating function for the zigzag numbers A000111. The zigzag Bernoulli numbers, denoted ZB(n), are defined by means of the generating function log E(t)/(E(t)-1) = Sum_{n>=0} ZB(n)*t^n/n!. See formula (1).
The present sequence lists the numerators of ZB(2*n) for n>=0.

Crossrefs

Sequence of denominators is A002445.

Programs

  • Maple
    #A185425
    a := n - > (-1)^n*add (binomial(2*n,2*k)/(2*k+1)* bernoulli(2*n-2*k)*
    euler(2*k), k = 0..n):
    seq(numer(a(n)), n = 0..20);
  • Mathematica
    Numerator[Table[(-1)^n*Sum[Binomial[2*n, 2*k]*BernoulliB[2*(n - k)]* EulerE[2*k]/(2*k + 1), {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Jul 06 2017 *)

Formula

(1)... 1/2*log(sec(t)+tan(t))*(1+sin(t)+cos(t))/(1+sin(t)-cos(t))
= Sum_{n >= 0} ZB(2*n)*t^(2*n)/(2*n)!
= 1 + (1/6)*t^2/2! + (19/30)*t^4/4! + (253/42)*t^6/6! + ....
(2)... ZB(2*n) = (-1)^n*Sum_{k = 0..n} binomial(2*n,2*k)/(2*k+1)* Bernoulli(2*n-2*k)*Euler(2*k).
(3)... a(n) = numerator(ZB(2*n)).

A091303 Third diagonal of A008970 (after A000111 and A000708).

Original entry on oeis.org

1, 14, 118, 926, 7311, 59982, 517496, 4717222, 45484301, 463683670, 4991117034, 56630860638, 676055834971, 8475491147678, 111376106002732, 1531384454297174, 21993657178539321, 329402210042157606
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2004

Keywords

Extensions

More terms from David Wasserman, Feb 28 2006

A111413 a(n) = f(f(n+1))-f(f(n)), where f(m) = Euler(m) = A000111(m).

Original entry on oeis.org

0, 0, 0, 15, 19391512129, 703237958001393736999896827714634659411015090272684227831001142371615151
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2005

Keywords

Crossrefs

Cf. A000111.

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> (f-> f(f(n+1))-f(f(n)))(k-> b(k, 0)):
    seq(a(n), n=0..5);  # Alois P. Heinz, Aug 17 2021
  • Mathematica
    $RecursionLimit = Infinity;
    t[n_, 0] := Boole[n == 0];
    t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k];
    f[n_] := t[n, n];
    a[n_] := f[f[n+1]] - f[f[n]];
    Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Apr 25 2022 *)

Extensions

Definition corrected by N. J. A. Sloane, Feb 14 2018

A141458 a(n) = A000111(2n) + A000111(2n+1).

Original entry on oeis.org

2, 3, 21, 333, 9321, 404313, 25071021, 2103118293, 229256855121, 31493764788273, 5321869241361621, 1084772760899990253, 262436014353765070521, 74338674113237083780233, 24371443829213227706941821, 9155506650374192400724494213, 3906927095300068860534174415521
Offset: 0

Views

Author

Paul Curtz, Aug 08 2008

Keywords

Crossrefs

Cf. A000111.

Programs

  • Maple
    A000111 := proc(n) if n = 0 then 1; else 2^n*abs(euler(n, 1/2)+euler(n, 1) ); end if; end proc:
    A141458 := proc(n) A000111(2*n)+A000111(2*n+1) ; end proc: # R. J. Mathar, Jul 07 2011
  • Mathematica
    terms = 20;
    CoefficientList[Sec[x] + Sec[x]^2 + O[x]^(2 terms - 1), x^2] Range[0, 2 terms - 2, 2]!  (* Jean-François Alcover, Nov 19 2020 *)
  • Python
    from itertools import accumulate, islice
    def A141458_gen(): # generator of terms
        yield 2
        blist = (0,1)
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=0)))[-1] + (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A141458_list = list(islice(A141458_gen(),30)) # Chai Wah Wu, Apr 17 2023

Formula

a(2n) == 21 (mod 100), n>0.
a(n) = (2n)! * [x^(2n)] sec(x) + sec(x)^2. - Ira M. Gessel, Apr 18 2013

A180419 a(n) = (A000111(2*p) - 1)/(2*p), where p = A000040(n) = prime(n).

Original entry on oeis.org

1, 10, 5052, 14240070, 3152221563324450, 157195096511273995860, 2374214683408467590063771983920, 618146855974818638210995488847340730, 144946467754033586465978879886385830380958862710
Offset: 1

Views

Author

Vladimir Shevelev, Sep 03 2010

Keywords

Comments

My comment in A000111 concerning A000111(2*p) mod (2*p) says that all entries are integers.

Crossrefs

Programs

  • Mathematica
    t = Range[0, 60]! CoefficientList[ Series[ Sec@x + Tan@x, {x, 0, 60}], x]; f[n_] := (Rest[t][[2 Prime@n]] - 1)/(2 Prime@n); Array[f, 9] (* Robert G. Wilson v, Sep 04 2010 *)
  • Python
    from sympy import euler, prime
    def A180419(n): return (1-euler(2*(p:=prime(n))))//p>>1 if n > 1 else 1 # Chai Wah Wu, Apr 18 2023

Extensions

a(6) onwards from Robert G. Wilson v, Sep 04 2010
Definition rephrased by R. J. Mathar, Sep 29 2010

A231895 a(n) = 2*A000111(n+1) + A000111(n).

Original entry on oeis.org

3, 3, 5, 12, 37, 138, 605, 3042, 17257, 108978, 758105, 5759322, 47439277, 421090218, 4006875605, 40686781602, 439122198097, 5019624693858, 60582649901105, 769831261587882, 10273367294485717, 143649246839399898, 2100196647406842605, 32044492213621026162, 509357494543973054137
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2013

Keywords

Comments

It is clear from the Berry et al. article that they intended to consider 2*A000111(n+1) - A000111(n) (which is A104854), not 2*A000111(n+1) + A000111(n).

Crossrefs

Programs

  • Python
    from itertools import accumulate, islice
    def A231895_gen(): # generator of terms
        yield 3
        blist = (0,1)
        while True:
            yield blist[-1]+2*(blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A231895_list = list(islice(A231895_gen(),40)) # Chai Wah Wu, Jun 14 2022

Formula

E.g.f.: 1 + (sec(x) + tan(x) + 1)*(sec(x) + tan(x)). - Sergei N. Gladkovskii, Jun 11 2015

A253671 a(n) = floor(A000111(n)/A000111(n-1)).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40
Offset: 1

Views

Author

Paul Curtz, Jan 08 2015, with the help of Jean-François Alcover

Keywords

Comments

1, 2, 3, 4, ... first appear at n = 1, 3, 5, 7, 8, 10, 11, 13, ... . a(500) = 318.
Numbers appearing only once: interleave 4+7*n, 6+7*n, 9+7*n = 4, 6, 9, 11, 13, 16, ... .
This is a nondecreasing sequence.
The ratio a(n)/n asymptotically tends to 7/11 = 0.6363... - Jean-François Alcover, Jul 21 2015

Examples

			Floor of 1/1, 1/1, 2/1, 5/2, 16/5, 61/16, ... .
1=1*1+0, 1=1*1+0, 2=2*1+0, 5=2*2+1, 16=3*5+1, 61=3*16+13, 272=4*61+28, ... .
		

Crossrefs

Programs

  • Mathematica
    max = 500; ee = Table[2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, max}]; A000111 = Table[Differences[ee, n] // First // Abs, {n, 0, max}]; Table[Quotient[A000111[[n + 1]], A000111[[n]]], {n, 1, max}] (* Jean-François Alcover, Jan 08 2015 *)
  • PARI
    Vec(x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1)/((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jan 22 2015
    
  • Python
    # requires python 3.2 or higher
    from itertools import accumulate
    A253671_list, blist, l1, l2 = [1], [1], 1, 1
    for n in range(10**2):
        blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
        l2, l1 = l1, sum(blist)
        A253671_list.append(l1//l2) # Chai Wah Wu, Jan 29 2015

Formula

a(n+2) = a(n+1) + (0, 1, 0, followed by a sequence of period 11: repeat 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1).
a(n+12) = a(n+1) + (6, 7, 6, followed by 7's = A010727).
a(n) = a(n-1) + a(n-11) - a(n-12) for n>15. - Colin Barker, Jan 22 2015
G.f.: x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1) / ((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jan 22 2015

A340315 Decimal expansion of sum of reciprocals of A000111(n) (where A000111(n) is the n-th Euler or up/down number).

Original entry on oeis.org

3, 7, 8, 3, 4, 4, 0, 9, 8, 3, 5, 0, 0, 7, 9, 7, 6, 6, 6, 6, 8, 3, 6, 8, 1, 6, 3, 9, 2, 2, 7, 9, 8, 9, 1, 5, 6, 1, 0, 7, 5, 0, 8, 5, 8, 9, 8, 6, 0, 1, 1, 2, 7, 4, 3, 1, 9, 8, 1, 9, 8, 0, 6, 3, 6, 6, 9, 1, 0, 7, 1, 0, 1, 1, 2, 5, 2, 3, 2, 2, 7, 6, 3, 6, 3, 4, 2, 2, 0, 6, 6, 9, 8, 1, 1, 9, 3, 7, 1, 8, 5, 6, 3, 9
Offset: 1

Views

Author

Marco Ripà, Jan 04 2021

Keywords

Comments

The series 1/1 + 1/1 + 1/1 + 1/2 + 1/5 + 1/16 + 1/61 + 1/272 + 1/1385 + 1/7936 + ... converges to 3.783440983500797666683...

Examples

			3.783440983500797666683...
		

Crossrefs

Programs

  • PARI
    f(n)=if(n, 2*abs(polylog(-n, I)), 1); \\ A000111
    suminf(n=0, 1/f(n)) \\ Michel Marcus, Jan 04 2021

Formula

Equals Sum_{k>=0} 1/A000111(k).

Extensions

More digits from Alois P. Heinz, Jan 06 2021

A373425 a(n) = A000111(n) * A000262(n). Row sums of A373426.

Original entry on oeis.org

1, 1, 3, 26, 365, 8016, 247111, 10236176, 546178905, 36478244608, 2977762858411, 291550484700672, 33703918027674245, 4540228104291094528, 704744561517173519343, 124836607292749756516352, 25023470823661358817690545, 5634174369285939855014166528, 1415592664236058550974684119763
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Crossrefs

A007316 Reversion of g.f. for Euler numbers A000111(n-1).

Original entry on oeis.org

1, -1, 1, -2, 3, -9, 9, -71, -96, -1325, -6843, -54922, -417975, -3586117, -32531983, -316599861, -3274076017, -35914014266, -416386323306, -5088908019824, -65392831090975, -881473287321301, -12437647407521019, -183345613125389337
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000111.

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(24, n -> if n=1 then 1 else 2^(n-1)*abs(euler(n-1, 1/2) + euler(n-1, 1)) fi); # Peter Luschny, Oct 05 2022

Extensions

Extended with signs by Christian G. Bower, Feb 15 1999
Signs and a(23) and a(24) corrected by Sean A. Irvine, Dec 08 2017
Previous Showing 21-30 of 349 results. Next