cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 777 results. Next

A327651 Composite numbers k coprime to 8 such that k divides Pell(k - Kronecker(8,k)), Pell = A000129.

Original entry on oeis.org

35, 169, 385, 779, 899, 961, 1121, 1189, 2419, 2555, 2915, 3107, 3827, 6083, 6265, 6441, 6601, 6895, 6965, 7801, 8119, 8339, 9179, 9809, 9881, 10403, 10763, 10835, 10945, 13067, 14027, 14111, 15179, 15841, 18241, 18721, 19097, 20833, 20909, 22499, 23219, 24727, 26795, 27869, 27971
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (a) holds for k, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 8), then there are 1232 such k <= 10^5 and 4973 such k <= 10^6, while there are only 83 terms <= 10^5 and 245 terms <= 10^6 in this sequence.
Also composite numbers k coprime to 8 such that A214028(k) divides k - Kronecker(8,k).

Examples

			Pell(36) = 21300003689580 is divisible by 35, so 35 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 this seq A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
* k is composite and coprime to m^2 + 4.
Cf. A000129, A214028, A091337 ({Kronecker(8,n)}).

Programs

  • PARI
    pellmod(n, m)=((Mod([2, 1; 1, 0], m))^n)[1, 2]
    isA327651(n)=!isprime(n) && !pellmod(n-kronecker(8,n), n) && gcd(n,8)==1 && n>1

A363829 Sum of the divisors of A000129(n) (Pell numbers).

Original entry on oeis.org

1, 3, 6, 28, 30, 144, 183, 1080, 1188, 3780, 5742, 52416, 33462, 131760, 251100, 1290096, 1145124, 5702400, 6804204, 42336000, 50176404, 146352096, 226041700, 2333111040, 1357893000, 4818528000, 9395060400, 47385112320, 44560482150, 251337038400, 264178169640
Offset: 1

Views

Author

Tyler Busby, Oct 19 2023

Keywords

Examples

			a(9)=1188 because Pell(9)=985 has divisors {1, 5, 197, 985}.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, LinearRecurrence[{2, 1}, {1, 2}, 32]] (* Amiram Eldar, Oct 19 2023 *)

Formula

a(n) = sigma(Pell(n)) = A000203(A000129(n)).

A363831 Number of divisors of A000129(n) (Pell numbers).

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 3, 16, 4, 8, 2, 72, 2, 12, 12, 40, 4, 32, 4, 96, 12, 16, 4, 384, 8, 16, 16, 144, 2, 288, 8, 96, 8, 32, 12, 1536, 8, 16, 16, 1024, 2, 288, 4, 384, 96, 32, 4, 3840, 12, 64, 32, 192, 2, 256, 32, 768, 32, 8, 2, 41472, 8, 64, 96, 896, 64, 256, 4
Offset: 1

Views

Author

Tyler Busby, Oct 19 2023

Keywords

Examples

			a(9)=4 because Pell(9)=985 has divisors {1, 5, 197, 985}.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,LinearRecurrence[{2,1},{1,2},67]] (* Stefano Spezia, Oct 19 2023 *)

Formula

a(n) = sigma0(Pell(n)) = A000005(A000129(n)).

A364818 Number of distinct prime divisors of A000129(n) (Pell numbers).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 2, 5, 2, 6, 3, 4, 2, 7, 3, 4, 4, 6, 1, 7, 3, 5, 3, 5, 3, 9, 3, 4, 4, 9, 1, 7, 2, 8, 6, 5, 2, 10, 3, 6, 5, 7, 1, 8, 5, 8, 5, 3, 1, 13, 3, 6, 6, 8, 6, 8, 2, 9, 4, 8, 3, 13, 2, 7, 8, 9, 5, 10, 4, 12, 7, 5, 2, 14, 7
Offset: 1

Views

Author

Tyler Busby, Oct 21 2023

Keywords

Examples

			a(8)=3 because Pell(8)=408 has prime factors {2, 2, 2, 3, 17}.
		

Crossrefs

Programs

  • Mathematica
    PrimeNu[LinearRecurrence[{2, 1}, {1, 2}, 85]] (* Amiram Eldar, Oct 21 2023 *)

Formula

a(n) = omega(Pell(n)) = A001221(A000129(n)).

A175658 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 2*Pell(n+1)+2*Pell(n)-2^n, with Pell = A000129.

Original entry on oeis.org

1, 4, 10, 26, 66, 166, 414, 1026, 2530, 6214, 15214, 37154, 90546, 220294, 535230, 1298946, 3149506, 7630726, 18476494, 44714786, 108168210, 261575494, 632367774, 1528408194, 3693378466, 8923553734, 21557263150, 52071634466
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 24 A[5] vectors with decimal values 23, 29, 53, 83, 86, 89, 92, 113, 116, 149, 209, 212, 275, 278, 281, 284, 305, 308, 338, 344, 368, 401, 404 and 464. These vectors lead for the side squares to A000079 and for the corner squares to 2*A094723 (a(n)=2*Pell(n+1)-2^n).
From Clark Kimberling, Aug 23 2017 (Start)
p-INVERT of (1,1,1,....), where p(S) = 1-S-2*S^2+2*S^3.
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A291000 for a guide to related sequences. (End)

Crossrefs

Cf. A175654, A175655 (central square).
Cf. A000129 (Pell(n)), A078057 (Pell(n)+Pell(n+1)), A094723 (Pell(n+2)-2^n).

Programs

  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 21 2013
    
  • Maple
    nmax:=27; m:=5; A[5]:= [0,0,0,0,1,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{4,-3,-2},{1,4,10},30] (* Harvey P. Dale, Jun 18 2013 *)
    CoefficientList[Series[(1 - 3 x^2) / (1 - 4 x + 3 x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
  • PARI
    Vec((1 - 3*x^2) / ((1 - 2*x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Aug 29 2017

Formula

G.f.: ( 1-3*x^2 ) / ( (2*x-1)*(x^2+2*x-1) ).
a(n) = 4*a(n-1)-3*a(n-2)-2*a(n-3) with a(0)=1, a(1)=4 and a(2)=10.
Limit_{n->oo} a(n+1)/a(n) = 1+sqrt(2).
a(n) = (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n) - 2^n. - Colin Barker, Aug 29 2017

A261331 Expansion of Product_{k>=1} (1+x^k)^(A000129(k)).

Original entry on oeis.org

1, 1, 2, 7, 18, 52, 143, 396, 1083, 2971, 8087, 21981, 59533, 160857, 433467, 1165542, 3126951, 8372451, 22374172, 59684669, 158941356, 422582925, 1121814072, 2973703449, 7871754065, 20809918535, 54943916547, 144891525408, 381647503607, 1004149670985
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; Pell[0]=0; Pell[1]=1; Pell[n_]:=Pell[n] = 2*Pell[n-1] + Pell[n-2]; CoefficientList[Series[Product[(1+x^k)^Pell[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+sqrt(2))^n * exp(-1/8 + 2^(1/4)*sqrt(n) + s) / (2^(11/8) * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} (-1)^(k+1)/(((sqrt(2)+1)^k - (sqrt(2)-1)^k - 2)*k) = -0.1149083344289588668149210160138124159112948627968378825745674888...
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - 2*x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018

A354005 Lexicographically earliest sequence of distinct positive integers with no finite subset summing to a positive Pell number (A000129).

Original entry on oeis.org

3, 4, 6, 7, 10, 11, 17, 24, 41, 58, 99, 116, 140, 239, 280, 338, 577, 816, 1393, 1970, 3363, 3940, 4756, 8119, 9512, 11482, 19601, 27720, 47321, 66922, 114243, 133844, 161564, 275807, 323128, 390050, 665857, 941664, 1607521, 2273378, 3880899, 4546756, 5488420
Offset: 1

Views

Author

Rémy Sigrist, May 13 2022

Keywords

Comments

The sequence is well defined:
- a(1) = 3,
- for n > 0, let k be such that A000129(k) + 1 + a(1) + ... + a(n) < A000129(k+1),
- then a(n+1) <= A000129(k) + 1.

Crossrefs

See A353889 for similar sequences.

A363833 Number of prime factors of A000129(n) (Pell numbers) (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 2, 5, 2, 3, 1, 7, 1, 4, 4, 7, 2, 5, 2, 7, 4, 4, 2, 10, 3, 4, 4, 8, 1, 9, 3, 9, 3, 5, 4, 12, 3, 4, 4, 11, 1, 9, 2, 9, 7, 5, 2, 14, 4, 6, 5, 8, 1, 8, 5, 11, 5, 3, 1, 17, 3, 6, 7, 13, 6, 8, 2, 10, 4, 9, 3, 17, 2, 7, 10, 10, 6, 10, 4, 15, 7, 5, 2
Offset: 1

Views

Author

Tyler Busby, Oct 19 2023

Keywords

Examples

			a(8)=5 because Pell(8)=408 has prime factors {2, 2, 2, 3, 17}.
		

Crossrefs

Programs

  • Mathematica
    PrimeOmega[LinearRecurrence[{2,1},{1,2},83]] (* Stefano Spezia, Oct 19 2023 *)

Formula

a(n) = bigomega(Pell(n)) = A001222(A000129(n)).

A048624 Essentially a duplicate of A000129.

Original entry on oeis.org

2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832, 1136689
Offset: 0

Views

Author

Keywords

A104565 Reversion of Pell numbers A000129(n+1).

Original entry on oeis.org

1, -2, 3, -2, -6, 28, -61, 54, 158, -860, 2062, -2004, -5804, 33720, -84509, 86054, 247862, -1492908, 3838298, -4019452, -11537556, 71101832, -185868978, 198310460, 567902572, -3555617432, 9404104764, -10168382696, -29069700056, 184127171952, -491229517661
Offset: 0

Views

Author

Paul Barry, Mar 15 2005

Keywords

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n<2, 1-3*n,
          ((8-8*n)*a(n-2)-(4*n+2)*a(n-1))/(n+2))
        end:
    seq (a(n), n=0..40);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    CoefficientList[Series[(Sqrt[1+4*x+8*x^2]-1-2*x)/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
    Table[(-2)^n Hypergeometric2F1[1/2-n/2, -n/2, 2, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
  • Sage
    def A104565_list(n):  # n>=1
        T = [0]*(n+1); R = [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a - 2*b - c
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u)
        return R
    A104565_list(30)  # Peter Luschny, Nov 01 2012

Formula

G.f.: (sqrt(1+4*x+8*x^2)-1-2*x)/(2*x^2).
a(n) = sum{k=0..floor(n/2), binomial(n, 2k)*C(k)*(-1)^(n-k)2^(n-2k)}, where C(n) is A000108. - Paul Barry, May 16 2005
G.f. 1/G(0) where G(k)= 1 + 2*x + x^2/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 10 2012
G.f.: (2/W(0)-1)/x where W(k)= 1 + 1/(1 + 2*x/(1 + 2*x/W(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 21 2012
D-finite with recurrence (n+2)*a(n) +2*(2*n+1)*a(n-1) +8*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 09 2012
G.f.: G(0)/x^2 - 1/x - 1/x^2 where G(k)= 1 + 2*x/(1 + 1/(1 + 2*x/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
G.f.: 1/(x^2*Q(0)) - 1/(x^2) - 1/x, where Q(k)= 1 - (4*k+1)*x*(1+2*x)/(k+1 - x*(1+2*x)*(2*k+2)*(4*k+3)/(2*x*(1+2*x)*(4*k+3) - (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
Lim sup n->infinity |a(n)|^(1/n) = 2*sqrt(2). - Vaclav Kotesovec, Feb 08 2014
a(n) = (-2)^n*hypergeom([1/2-n/2,-n/2], [2], -1). - Vladimir Reshetnikov, Nov 07 2015
Previous Showing 31-40 of 777 results. Next