cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A181609 Kendell-Mann numbers in terms of Mahonian distribution.

Original entry on oeis.org

2, 3, 7, 23, 108, 604, 3980, 30186, 258969, 2479441, 26207604, 303119227, 3807956707, 51633582121, 751604592219, 11690365070546, 193492748067369, 3395655743755865, 62980031819261211, 1230967683216803500
Offset: 2

Views

Author

Mikhail Gaichenkov, Jan 30 2011

Keywords

Comments

It is well known that the variance of the Mahonian distribution is equal to sigma^2=n(n-1)(2n+5)/72. It is possible to have the asymptotic expansion for Kendell-Mann numbers M(n)=n!/sigma * 1/sqrt(2*Pi) * (1 - 2/(3*n) + O(1/n^2)). This results in M(n+1)/M(n)=n-1/2+O(1/n) as n--> infinity. [corrected by Vaclav Kotesovec, May 17 2015]

Examples

			M(2)=2, M(3)=3, M(4)=7,...
		

Crossrefs

Cf. A000140.

Formula

M(n) = Round(n!/sqrt(Pi*n(n-1)(2n+5)/36)).

A186860 Largest coefficient of (1)(1+2x)(1+2x+3x^2)*...*(1+2x+3x^2+...+(n+1)*x^n).

Original entry on oeis.org

1, 2, 7, 49, 562, 9132, 207915, 6296448, 239972192, 11427298486, 661227186254, 45688884832738, 3716852205228166, 351101915633367990, 38275029480566516322, 4750162039324230600200, 666311679640315952033655, 105085327413072323807645048
Offset: 1

Views

Author

Robert G. Wilson v, Feb 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Max@ CoefficientList[ Expand@ Product[ Sum[(i + 1)*x^i, {i, 0, j}], {j, n - 1}], x]; Array[f, 18]
  • Sage
    def A186860(n):
        p = prod(sum(i*x^(i-1) for i in (1..k)) for k in (1..n))
        return Integer(max(p.coefficients())[0]) # D. S. McNeil, Feb 28 2011

Formula

Conjecture: a(n) ~ 3^(3/2) * sqrt(Pi) * n^(2*n + 1/2) / (2^(n-1) * exp(2*n)). - Vaclav Kotesovec, Jan 05 2023

A316775 a(n) is the number of permutations of [1..n] that have the same number of inversions as non-inversions.

Original entry on oeis.org

1, 1, 0, 0, 6, 22, 0, 0, 3836, 29228, 0, 0, 25598186, 296643390, 0, 0, 738680521142, 11501573822788, 0, 0, 62119523114983224, 1214967840930909302, 0, 0, 12140037056605135928410, 285899248139692651257566, 0, 0, 4759461354691529363949651814
Offset: 0

Views

Author

Tanya Khovanova, Oct 22 2018

Keywords

Comments

a(n) is zero when n choose 2 is odd, that is for numbers that have remainders 2 or 3 when divided by 4.

Examples

			Consider a permutation 1432. It has exactly three pairs of numbers, the first of them is 1, that are in increasing order. The other three pairs are in decreasing order. The other 5 permutations of size 4 with this property are 2341, 2413, 3142, 3214, 4123. Thus a(4) = 6.
		

Crossrefs

Formula

a(n) = A000140(n) if n in { A042948 }. - Alois P. Heinz, Oct 25 2018

Extensions

a(10)-a(15) from Giovanni Resta, Oct 22 2018
a(16)-a(28) from Alois P. Heinz, Oct 24 2018

A369773 Maximal coefficient of (1 + x) * (1 + x - x^2) * ... * (1 + x - x^2 + ... - (-x)^n).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 19, 59, 233, 1189, 7046, 45326, 356517, 3108808, 30028121, 325635647, 3830546752, 49403859787, 685063715374, 10162709827329, 162776892315940, 2754021620252692, 49463507801582609, 940216720983170113, 18786988751008626812
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 - Sum[(-x)^j, {j, 1, i}]), {i, 1, n}], x]], {n, 0, 24}]
  • Python
    from collections import Counter
    def A369773(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                for i in range(1,k+1):
                    d[j+i] += (a if i&1 else -a)
            c = d
        return max(c.values()) # Chai Wah Wu, Feb 01 2024

A369774 Maximal coefficient of (1 - x) * (1 - x - x^2) * ... * (1 - x - x^2 - ... - x^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 13, 63, 167, 1227, 5240, 46958, 297080, 3108808, 26714243, 325635647, 3535022425, 49403859787, 646713449897, 10221697892707, 156049674957354, 2756431502525358, 48028121269507891, 940216720983170113, 18359095114316009613
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 - Sum[x^j, {j, 1, i}]), {i, 1, n}], x]], {n, 0, 24}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, 1 - sum(i=1, k, x^i)))); \\ Michel Marcus, Feb 01 2024
    
  • Python
    from collections import Counter
    def A369774(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                for i in range(1,k+1):
                    d[j+i] -= a
            c = d
        return max(c.values()) # Chai Wah Wu, Feb 01 2024

A141473 Number of 3-equitable permutations: permutations on n letters equally avoiding each permutation of S_3.

Original entry on oeis.org

6, 2, 2, 0, 0, 4, 2, 0, 0
Offset: 3

Views

Author

Sunil Abraham (sunil.abraham(AT)lmh.ox.ac.uk), Aug 08 2008

Keywords

Comments

A permutation is 3-equitable if no omega in S_3 appears more than ceiling(binomial(n,3)/6) times or fewer than floor(binomial(n,3)/6) times.
E.g., 2143 contains 214, 213--213 permutations--and 243 and 143--both 132 permutations.
This is a generalization of the Kendall-Mann numbers A000140.

Examples

			The only 3-equitable permutations in S_4: [3, 1, 4, 2], [2, 4, 1, 3].
		

Crossrefs

Cf. A000140.

A369766 Maximal coefficient of Product_{i=1..n} Sum_{j=0..i} x^(i*j).

Original entry on oeis.org

1, 1, 1, 2, 6, 24, 115, 662, 4456, 34323, 298220, 2885156, 30760556, 358379076, 4530375092, 61762729722, 903311893770, 14108704577103, 234387946711329, 4127027097703638, 76774080851679152, 1504640319524566870, 30986929089570280955, 669023741837953551188
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> max(coeffs(expand(mul(add(x^(i*j), j=0..i), i=1..n)))):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jan 31 2024
  • Mathematica
    Table[Max[CoefficientList[Product[Sum[x^(i j), {j, 0, i}], {i, 1, n}], x]], {n, 0, 23}]
  • PARI
    a(n) = vecmax(Vec(prod(i=1, n, sum(j=0, i, x^(i*j))))); \\ Michel Marcus, Jan 31 2024
    
  • Python
    from collections import Counter
    def A369766(n):
        c = {0:1,1:1}
        for i in range(2,n+1):
            d = Counter()
            for k in c:
                for j in range(0,i*i+1,i):
                    d[j+k] += c[k]
            c = d
        return max(c.values()) # Chai Wah Wu, Jan 31 2024

A369775 Maximal coefficient of (1 + x^2) * (1 + x^2 + x^3) * (1 + x^2 + x^3 + x^5) * ... * (1 + x^2 + ... + x^prime(n)).

Original entry on oeis.org

1, 1, 2, 5, 16, 65, 293, 1807, 12946, 106475, 972260, 9858553, 109451903, 1323071345, 17398667717, 247055196932, 3753507625272, 60680317203979, 1043036844360792, 18969267205680868, 364107881070036688, 7366172106829696356, 156467911373737550264
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 + Sum[x^Prime[j], {j, 1, i}]), {i, 1, n}], x]], {n, 0, 22}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, 1 + sum(i=1, k, x^prime(i))))); \\ Michel Marcus, Feb 01 2024
    
  • Python
    from collections import Counter
    from sympy import prime, primerange
    def A369775(n):
        if n == 0: return 1
        c, p = {0:1}, list(primerange(prime(n)+1))
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                for i in p[:k]:
                    d[j+i] += a
            c = d
        return max(c.values()) # Chai Wah Wu, Feb 01 2024

A349404 The maximal coefficient in the expansion of x_1(x_1 + x_2)...(x_1 + x_2 + ... + x_n).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 27, 96, 384, 1536, 7500, 37500, 194400, 1166400, 7563150, 52942050, 385351680, 3082813440, 24998984640, 224990861760, 2024917755840, 19051200000000, 190512000000000, 1944663768432000, 21391301452752000
Offset: 0

Views

Author

Sela Fried, Nov 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Max/@Table[Values@CoefficientRules[Times@@Array[Total@Array[x,#]&,n]],{n,0,12}] (* Giorgos Kalogeropoulos, Nov 16 2021 *)

A369791 a(n) is the maximal coefficient of (1 + x^a(1)) * (1 + x^a(1) + x^a(2)) * ... * (1 + x^a(1) + x^a(2) + ... + x^a(n-1)).

Original entry on oeis.org

1, 1, 1, 3, 8, 22, 70, 262, 1088, 5076, 26490, 146542, 896402, 5662622, 39826304, 279072864, 2232912264, 17866212198, 153323343990, 1379920982310, 13115759159982, 131158174385100
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2024

Keywords

Crossrefs

Cf. A000140.

Programs

  • Mathematica
    a[n_] := a[n] = Max[CoefficientList[Product[(1 + Sum[x^a[j], {j, 1, i}]), {i, 1, n - 1}], x]]; Table[a[n], {n, 0, 15}]
  • Python
    from itertools import islice
    from collections import Counter
    def A369791_gen(): # generator of terms
        c, a = {0:1}, []
        while True:
            a.append(max(c.values()))
            yield a[-1]
            d = Counter(c)
            for k in c:
                for b in a:
                    d[k+b] += c[k]
            c = d
    A369791_list = list(islice(A369791_gen(),10)) # Chai Wah Wu, Feb 01 2024

Extensions

a(16)-a(20) from Alois P. Heinz, Feb 01 2024
a(21) from Chai Wah Wu, Feb 01 2024
Previous Showing 11-20 of 20 results.