cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A336018 a(n) = floor(frac(log_2(n))*n), where frac denotes the fractional part.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 5, 0, 1, 3, 5, 7, 9, 11, 13, 0, 1, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 29, 0, 1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, 0, 1, 2, 4, 5, 7, 9, 10, 12, 13
Offset: 1

Views

Author

Andres Cicuttin, Jul 04 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> floor(n*log[2](n))-n*ilog2(n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 04 2021
  • Mathematica
    a[n_]:=Floor[FractionalPart[Log[2, n]]*n];
    Table[a[n], {n, 1, 100}]
  • PARI
    a(n) = floor(n*frac(log(n)/log(2))); \\ Michel Marcus, Jul 07 2020
    
  • Python
    def A336018(n):
        return len(bin(n**n//(2**((len(bin(n))-3)*n))))-3 # Chai Wah Wu, Jul 09 2020

Formula

a(n) = floor((log_2(n) - floor(log_2(n)))*n).
From Alois P. Heinz, Jan 04 2021: (Start)
a(n) = A326299(n) - A340301(n).
a(n) = 0 <=> n in { A000079 }. (End)

A003619 Not of form [ e^m ], m >= 1.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53
Offset: 1

Views

Author

Keywords

Comments

If 1 is excluded (of form [e^0]) then complement of A000149. - Michel Marcus, Jun 16 2013

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000195.

Programs

  • Haskell
    a003619 n = n + floor (log (x + fromIntegral (floor $ log x)))
                where x = fromIntegral n + 1
    -- Reinhard Zumkeller, Mar 17 2015
  • Mathematica
    Table[n + Floor@ Log[n + 1 + Floor@ Log[n + 1]], {n, 50}] (* Michael De Vlieger, Oct 06 2017 *)
  • PARI
    a(n) = n + floor( log (n + 1 + floor( log (n + 1) )) ) \\ Michel Marcus, Jun 16 2013
    

Formula

a(n) = n + [ log (n + 1 + [ log (n + 1) ]) ].

A092919 Partial sums of A000193 (round(log(n))).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210
Offset: 1

Views

Author

Jorge Coveiro, Apr 13 2004

Keywords

Examples

			a(1) = round(log(1)).
a(2) = a(1) + round(log(2)).
a(3) = a(2) + round(log(3)).
...
		

Crossrefs

A292621 a(n) = a(n-1) + a(floor(log(n))) with a(1) = 1, a(2) = 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 139, 143, 147, 151, 155, 159, 163, 167
Offset: 1

Views

Author

Yi Yang, Sep 20 2017

Keywords

Comments

a(n) > c*n*log(n)*log(log(n))*log(log(log(n)))*...*log(log...(log(n))...) (k layers) for any sufficient large n, any constant c and any positive integer k.
The sum of 1/a(i) for i = 1, 2, 3, ... diverges extremely slowly.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
    procname(n-1)+procname(floor(log(n)))
    end proc:
    f(1):= 1: f(2):= 2:
    map(f, [$1..100]); # Robert Israel, Sep 28 2017
  • Mathematica
    a[n_] := a[n] = If[n <= 2, n, a[n - 1] + a[Floor@ Log@ n]]; Array[a, 62] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    a(n) = if (n<=2, n, a(n-1) + a(floor(log(n)))); \\ Michel Marcus, Sep 21 2017

A004237 a(n) = floor(100*log(n)).

Original entry on oeis.org

0, 69, 109, 138, 160, 179, 194, 207, 219, 230, 239, 248, 256, 263, 270, 277, 283, 289, 294, 299, 304, 309, 313, 317, 321, 325, 329, 333, 336, 340, 343, 346, 349, 352, 355, 358, 361, 363, 366, 368, 371, 373, 376
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(floor(100*log(n)),n=1..100); # Robert Israel, Aug 04 2019

A067283 Numbers n such that the number of divisors of n is floor(log(n)).

Original entry on oeis.org

11, 13, 17, 19, 25, 49, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 404, 412, 423, 425, 428, 436, 452, 475, 477, 507, 508, 524, 531, 539, 548, 549, 556, 575, 578
Offset: 1

Views

Author

Benoit Cloitre, Feb 24 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[600],DivisorSigma[0,#]==Floor[Log[#]]&] (* Harvey P. Dale, May 07 2018 *)

Formula

n such that A000005(n) = A000195(n).

A108173 Let beta = A058265. Sequence gives a(n) = 1 + ceiling((n-1)*beta^2).

Original entry on oeis.org

1, 5, 8, 12, 15, 18, 22, 25, 29, 32, 35, 39, 42, 45, 49, 52, 56, 59, 62, 66, 69, 73, 76, 79, 83, 86, 89, 93, 96, 100, 103, 106, 110, 113, 117, 120, 123, 127, 130, 133, 137, 140, 144, 147, 150, 154, 157, 160, 164, 167, 171, 174, 177, 181, 184, 188, 191, 194, 198, 201
Offset: 1

Views

Author

Roger L. Bagula, Jun 13 2005

Keywords

Comments

Tribonacci version of A007066 using positive real Pisot root of x^3-x^2-x-1.

Crossrefs

Programs

  • Mathematica
    NSolve[x^3 - x^2 - x - 1 == 0, x] beta = 1.8392867552141612 a[n_] = 1 + Ceiling[(n - 1)*beta^2] (* A007066 like*) aa = Table[a[n], {n, 1, 100}] (*A076662 like*) b = Table[a[n] - a[n - 1], {n, 2, Length[aa]}] F[1] = 2; F[n_] := F[n] = F[n - 1] + b[[n]] (* A000195 like *) c = Table[F[n], {n, 1, Length[b] - 1}]

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A171728 Numbers k which establish records for floor(log(log(log(2^k)))).

Original entry on oeis.org

2, 3, 4, 22, 2335, 762451795, 742762245454927736743542, 41133018324375596439235122590123953570787986963829981156569123587
Offset: 1

Views

Author

Jonathan Vos Post, Dec 16 2009

Keywords

Comments

Morris writes: E. Thorp introduced the following card shuffling model. Suppose the number of cards n is even. Cut the deck into two equal piles. Drop the first card from the left pile or from the right pile according to the outcome of a fair coin flip. Then drop from the other pile. Continue this way until both piles are empty. We show that if n is a power of 2 then the mixing time of the Thorp shuffle is O(log^3 n). Previously, the best known bound was O(log^4 n).
This sequence seems to be unrelated to the Thorp shuffle in which the bound is log^3 x = (log x)^3 rather than log log log x. - Charles R Greathouse IV, Sep 04 2015

Examples

			a(1) = 2 because log(log(log(2^2))) ~ -1.1189142050548055457 whose floor is -2.
a(2) = 3 because log(log(log(2^3))) ~ -0.31183902548187902095 whose floor is -1.
		

Crossrefs

Programs

Formula

a(n) = Min(n such that floor(log(log(log(2^n)))) > floor(log(log(log(2^(n-1)))))).
a(n) = ceiling(exp(exp(n-3)-log(log(2)))). - R. J. Mathar, Mar 31 2010

Extensions

Two more terms from R. J. Mathar, Mar 31 2010

A355703 a(n) = binomial(n, floor(log(n))).

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 7, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180, 16215, 17296, 18424, 19600, 20825
Offset: 1

Views

Author

Christoph B. Kassir, Jul 14 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> binomial(n, ilog(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 31 2022
  • Mathematica
    a[n_] := Binomial[n, Floor[Log[n]]]; Array[a, 50] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    a(n) = binomial(n, floor(log(n))); \\ Michel Marcus, Jul 31 2022
  • Python
    from numpy import log
    from math import comb, floor
    for n in range(1, 50):
        x = comb(n, floor(log(n)))
        print("{}, ".format(x), end='')
    

A108165 a(n)=a(n-1) +A108173(n+1) -A108173(n).

Original entry on oeis.org

2, 5, 9, 12, 15, 19, 22, 26, 29, 32, 36, 39, 42, 46, 49, 53, 56, 59, 63, 66, 70, 73, 76, 80, 83, 86, 90, 93, 97, 100, 103, 107, 110, 114, 117, 120, 124, 127, 130, 134, 137, 141, 144, 147, 151, 154, 157, 161, 164, 168, 171, 174, 178, 181, 185, 188, 191, 195, 198, 201
Offset: 1

Views

Author

Roger L. Bagula, Jun 13 2005

Keywords

Comments

Tribonacci version of A001950 using beta, the positive real root of x^3-x^2-x-1, as the constant.

Crossrefs

Programs

  • Mathematica
    NSolve[x^3 - x^2 - x - 1 = 0, x] beta = 1.8392867552141612 a[n_] = 1 + Ceiling[(n - 1)*beta^2] (* A007066-like*) aa = Table[a[n], {n, 1, 100}] (*A076662-like*) b = Table[a[n] - a[n - 1], {n, 2, Length[aa]}] F[1] = 2; F[n_] := F[n] = F[n - 1] + b[[n]] (* A000195-like*) c = Table[F[n], {n, 1, Length[b] - 1}]

Extensions

Partially edited by N. J. A. Sloane, May 04 2007
Correction of definition and offset by R. J. Mathar, Mar 12 2012
Previous Showing 11-20 of 23 results. Next