A102290
Total number of even lists in all sets of lists, cf. A000262.
Original entry on oeis.org
0, 0, 2, 6, 60, 380, 3990, 37002, 450296, 5373720, 76018410, 1096730030, 17814654132, 299645294676, 5511836578430, 105550556136690, 2171244984679920, 46545825736022192, 1059273836225051346, 25100215228045842390, 626204775725372971820, 16239127347086448236460
Offset: 0
-
l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
[0,0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j,-1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
-
Gser:=series(x^2*exp(x/(1-x))/(1-x^2),x=0,22):seq(n!*coeff(Gser,x^n),n=1..21); # Emeric Deutsch
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add(
(p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)*
binomial(n-1, j-1)*j!), j=1..n))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j,0,n-2}]], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
-
[0,0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j,0,-1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
Original entry on oeis.org
1, 2, 5, 18, 91, 592, 4643, 42276, 436629, 5033182, 63974273, 888047414, 13358209647, 216334610860, 3751352135263, 69325155322184, 1359759373992105, 28206375825238458, 616839844140642301, 14181213537729200474, 341879141423814854915, 8623032181189674581256
Offset: 0
a(20) = 1 + 1 + 3 + 13 + 73 + 501 + 4051 + 37633 + 394353 + 4596553 + 58941091 + 824073141 + 12470162233 + 202976401213 + 3535017524403 + 65573803186921 + 1290434218669921 + 26846616451246353 + 588633468315403843 + 13564373693588558173 + 327697927886085654441.
-
l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
[n eq 0 select 1 else 1 + (&+[ Factorial(j)*( l(j,-1) - l(j-1,-1) ): j in [1..n]]): n in [0..25]]; // G. C. Greubel, Mar 09 2021
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*j!*binomial(n-1, j-1), j=1..n))
end:
a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
-
With[{m = 25}, CoefficientList[Exp[x/(1-x)] + O[x]^m, x] Range[0, m-1]!// Accumulate] (* Jean-François Alcover, Nov 21 2020 *)
Table[1 +Sum[j!*(LaguerreL[j, -1] -LaguerreL[j-1, -1]), {j,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
-
[1 + sum(factorial(j)*(gen_laguerre(j,0,-1) - gen_laguerre(j-1,0,-1)) for j in (1..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
A192681
Floor-sqrt transform of Lah partition numbers (A000262).
Original entry on oeis.org
1, 1, 1, 3, 8, 22, 63, 193, 627, 2143, 7677, 28706, 111669, 450529, 1880164, 8097765, 35922614, 163849371, 767224522, 3682984346, 18102428784, 91000840873, 467393250911, 2450438244585, 13102651355735, 71398380128514, 396202573696587
Offset: 0
-
A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc:
A192681 := proc(n) floor(sqrt(A000262(n))) ; end proc: # R. J. Mathar, Jul 13 2011
-
FSFromExpSeries[f_,x_,n_] := Map[Floor[Sqrt[#]]&,CoefficientList[Series[f,{x,0,n}],x]Table[k!,{k,0,n}]]
FSFromExpSeries[Exp[x/(1-x)],x,60]
Original entry on oeis.org
1, 1, 9, 169, 5329, 251001, 16410601, 1416242689, 155514288609, 21128299481809, 3474052208270281, 679096541717605881, 155504946117339546289, 41199419449380747871369, 12496348897836314700506409
Offset: 0
-
Table[HypergeometricPFQ[{-n+1,-n},{},1]^2,{n,0,100}]
-
makelist(hypergeometric([-n+1,-n],[],1)^2,n,0,12);
Original entry on oeis.org
1, 3, 39, 949, 36573, 2029551, 152451283, 14840686449, 1812664465209, 270925848659323, 48571769994336831, 10276325760127883853, 2531148652596607988629, 717525135328209346300839, 231804543407519025287933163
Offset: 0
-
Table[HypergeometricPFQ[{-n+1,-n},{},1]HypergeometricPFQ[{-n,-n-1},{},1],{n,0,100}]
-
makelist(hypergeometric([-n+1,-n],[],1)*hypergeometric([-n,-n-1],[],1),n,0,12);
A351823
Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 1, 1, 2, 7, 6, 49, 12, 12, 301, 140, 60, 2281, 1470, 180, 120, 21211, 12642, 2940, 840, 220417, 127736, 41160, 3360, 1680, 2528569, 1527192, 455112, 70560, 15120, 32014801, 19837530, 5748120, 1234800, 75600, 30240, 442974511, 278142590, 83995560, 16687440, 1940400, 332640
Offset: 0
Triangle T(n,k) begins:
1;
1;
1, 2;
7, 6;
49, 12, 12;
301, 140, 60;
2281, 1470, 180, 120;
21211, 12642, 2940, 840;
...
-
b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
`if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12); # Alois P. Heinz, Feb 20 2022
-
nn = 7; Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid
A351825
Total number of size 2 lists in all sets of lists partitioning [n] (cf. A000262).
Original entry on oeis.org
0, 0, 2, 6, 36, 260, 2190, 21042, 226856, 2709576, 35491770, 505620830, 7780224012, 128555409996, 2269569526406, 42625044254730, 848404205856720, 17836074466842512, 394872870912995826, 9181542826326252726, 223680717959853460340, 5697036951307194432660, 151396442683371572351742
Offset: 0
-
nn = 22; Range[0, nn]! CoefficientList[Series[D[Exp[ x/(1 - x) - x ^2 + y x^2], y] /. y -> 1, {x, 0, nn}], x]
Join[{0, 0, 2}, Table[n!*Hypergeometric1F1[n-1, 2, 1]/E, {n, 3, 25}]] (* Vaclav Kotesovec, Feb 21 2022 *)
Original entry on oeis.org
1, 1, 3, 26, 365, 8016, 247111, 10236176, 546178905, 36478244608, 2977762858411, 291550484700672, 33703918027674245, 4540228104291094528, 704744561517173519343, 124836607292749756516352, 25023470823661358817690545, 5634174369285939855014166528, 1415592664236058550974684119763
Offset: 0
A265608
Triangle read by rows: Bell transform of A000262.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 13, 15, 6, 1, 0, 73, 95, 45, 10, 1, 0, 501, 723, 390, 105, 15, 1, 0, 4051, 6405, 3843, 1190, 210, 21, 1, 0, 37633, 64615, 42462, 14693, 3010, 378, 28, 1, 0, 394353, 730359, 519993, 197442, 45423, 6678, 630, 36, 1
Offset: 0
[n\k 0 1 2 3 4 5 6 7 8]
[0] [1]
[1] [0, 1]
[2] [0, 1, 1]
[3] [0, 3, 3, 1]
[4] [0, 13, 15, 6, 1]
[5] [0, 73, 95, 45, 10, 1]
[6] [0, 501, 723, 390, 105, 15, 1]
[7] [0, 4051, 6405, 3843, 1190, 210, 21, 1]
[8] [0, 37633, 64615, 42462, 14693, 3010, 378, 28, 1]
-
# uses[bell_transform from A264428]
def A265608_row(n):
fact = [factorial(k) for k in (1..n)]
fact2 = [sum(bell_transform(k, fact)) for k in range(n)]
return bell_transform(n, fact2)
[A265608_row(n) for n in (0..9)]
A349780
Triangle read by rows, T(n, k) = A000262(n) - A349776(n, n - k) for n > 0 and T(0, 0) = 1.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 7, 13, 0, 1, 13, 49, 73, 0, 1, 21, 141, 381, 501, 0, 1, 31, 331, 1531, 3331, 4051, 0, 1, 43, 673, 4873, 17473, 32593, 37633, 0, 1, 57, 1233, 12993, 71793, 212913, 354033, 394353, 0, 1, 73, 2089, 30313, 241993, 1088713, 2782153, 4233673, 4596553
Offset: 0
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 7, 13;
[4] 0, 1, 13, 49, 73;
[5] 0, 1, 21, 141, 381, 501;
[6] 0, 1, 31, 331, 1531, 3331, 4051;
[7] 0, 1, 43, 673, 4873, 17473, 32593, 37633;
[8] 0, 1, 57, 1233, 12993, 71793, 212913, 354033, 394353;
[9] 0, 1, 73, 2089, 30313, 241993, 1088713, 2782153, 4233673, 4596553.
Comments