cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 261 results. Next

A102290 Total number of even lists in all sets of lists, cf. A000262.

Original entry on oeis.org

0, 0, 2, 6, 60, 380, 3990, 37002, 450296, 5373720, 76018410, 1096730030, 17814654132, 299645294676, 5511836578430, 105550556136690, 2171244984679920, 46545825736022192, 1059273836225051346, 25100215228045842390, 626204775725372971820, 16239127347086448236460
Offset: 0

Views

Author

Vladeta Jovovic, Feb 19 2005

Keywords

Crossrefs

Programs

  • Magma
    l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
    [0,0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j,-1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
  • Maple
    Gser:=series(x^2*exp(x/(1-x))/(1-x^2),x=0,22):seq(n!*coeff(Gser,x^n),n=1..21); # Emeric Deutsch
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)*
            binomial(n-1, j-1)*j!), j=1..n))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
    Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j,0,n-2}]], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [0,0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j,0,-1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
    

Formula

E.g.f.: x^2/(1-x^2)*exp(x/(1-x)).
Recurrence: (n-2)*a(n) = (n-2)*n*a(n-1) + (n-1)^2*n*a(n-2) - (n-3)*(n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 - 41/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = n! * Sum_{j=0..n-2} (-1)^(n+j)*LaguerreL(j, -1) for n>1 with a(0)=a(1)=0. - G. C. Greubel, Mar 09 2021

Extensions

More terms from Emeric Deutsch, Mar 27 2005
a(0)=0 prepended by Alois P. Heinz, May 10 2016

A173227 Partial sums of A000262.

Original entry on oeis.org

1, 2, 5, 18, 91, 592, 4643, 42276, 436629, 5033182, 63974273, 888047414, 13358209647, 216334610860, 3751352135263, 69325155322184, 1359759373992105, 28206375825238458, 616839844140642301, 14181213537729200474, 341879141423814854915, 8623032181189674581256
Offset: 0

Views

Author

Jonathan Vos Post, Feb 13 2010

Keywords

Comments

Partial sums of the number of "sets of lists": number of partitions of {1,..,n} into any number of lists, where a list means an ordered subset. The subsequence of primes begins: 2, 5, 4643, 616839844140642301.

Examples

			a(20) = 1 + 1 + 3 + 13 + 73 + 501 + 4051 + 37633 + 394353 + 4596553 + 58941091 + 824073141 + 12470162233 + 202976401213 + 3535017524403 + 65573803186921 + 1290434218669921 + 26846616451246353 + 588633468315403843 + 13564373693588558173 + 327697927886085654441.
		

Crossrefs

Programs

  • Magma
    l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
    [n eq 0 select 1 else 1 + (&+[ Factorial(j)*( l(j,-1) - l(j-1,-1) ): j in [1..n]]): n in [0..25]]; // G. C. Greubel, Mar 09 2021
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
           b(n-j)*j!*binomial(n-1, j-1), j=1..n))
        end:
    a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 11 2016
  • Mathematica
    With[{m = 25}, CoefficientList[Exp[x/(1-x)] + O[x]^m, x] Range[0, m-1]!// Accumulate] (* Jean-François Alcover, Nov 21 2020 *)
    Table[1 +Sum[j!*(LaguerreL[j, -1] -LaguerreL[j-1, -1]), {j,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [1 + sum(factorial(j)*(gen_laguerre(j,0,-1) - gen_laguerre(j-1,0,-1)) for j in (1..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
    

Formula

From Vaclav Kotesovec, Oct 25 2016: (Start)
a(n) = 2*n*a(n-1) - (n^2 - n + 1)*a(n-2) + (n-2)*(n-1)*a(n-3).
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/sqrt(2) * (1 - 5/(48*sqrt(n))).
(End)
a(n) = 1 + Sum_{j=1..n} j!*( LaguerreL(j,-1) - LaguerreL(j-1,-1) ). - G. C. Greubel, Mar 09 2021

A192681 Floor-sqrt transform of Lah partition numbers (A000262).

Original entry on oeis.org

1, 1, 1, 3, 8, 22, 63, 193, 627, 2143, 7677, 28706, 111669, 450529, 1880164, 8097765, 35922614, 163849371, 767224522, 3682984346, 18102428784, 91000840873, 467393250911, 2450438244585, 13102651355735, 71398380128514, 396202573696587
Offset: 0

Views

Author

Emanuele Munarini, Jul 07 2011

Keywords

Programs

  • Maple
    A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc:
    A192681 := proc(n) floor(sqrt(A000262(n))) ; end proc: # R. J. Mathar, Jul 13 2011
  • Mathematica
    FSFromExpSeries[f_,x_,n_] := Map[Floor[Sqrt[#]]&,CoefficientList[Series[f,{x,0,n}],x]Table[k!,{k,0,n}]]
    FSFromExpSeries[Exp[x/(1-x)],x,60]

Formula

a(n) = floor(sqrt(A000262(n))).

Extensions

All terms replaced by R. J. Mathar, Jul 13 2011

A276960 a(n) = A000262(n)^2.

Original entry on oeis.org

1, 1, 9, 169, 5329, 251001, 16410601, 1416242689, 155514288609, 21128299481809, 3474052208270281, 679096541717605881, 155504946117339546289, 41199419449380747871369, 12496348897836314700506409
Offset: 0

Views

Author

Emanuele Munarini, Sep 27 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{-n+1,-n},{},1]^2,{n,0,100}]
  • Maxima
    makelist(hypergeometric([-n+1,-n],[],1)^2,n,0,12);

Formula

Recurrence: (2*n+3)*a(n+3)-(2*n+5)*(3*n^2+13*n+13)*a(n+2)+(n+2)*(n+1)*(2*n+3)*(3*n^2+13*n+13)*a(n+1)-n^2*(n+1)^3*(n+2)*(2 n+5)*a(n) = 0.
Asymptotic: a(n) ~ exp(-2*n+4*sqrt(n)-1)*n^(2*n-1/2)/2 * (1 - 5/(24*sqrt(n)) - 35/(1152*n)).

A276964 a(n) = A000262(n)*A000262(n+1).

Original entry on oeis.org

1, 3, 39, 949, 36573, 2029551, 152451283, 14840686449, 1812664465209, 270925848659323, 48571769994336831, 10276325760127883853, 2531148652596607988629, 717525135328209346300839, 231804543407519025287933163
Offset: 0

Views

Author

Emanuele Munarini, Sep 27 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{-n+1,-n},{},1]HypergeometricPFQ[{-n,-n-1},{},1],{n,0,100}]
  • Maxima
    makelist(hypergeometric([-n+1,-n],[],1)*hypergeometric([-n,-n-1],[],1),n,0,12);

Formula

Recurrence: (2*n+3)*a(n+3)-(2*n+3)*(3*n^2+19*n+29)*a(n+2)+(n+2)*(n+1)*(2*n+7)*(3*n^2+13*n+13)*a(n+1)-n*(n+1)^3*(n+2)^2*(2*n+7)*a(n) = 0.
Asymptotic: a(n) ~ (1/2)*exp(-2*n+2*sqrt(n)+2*sqrt(n+1)-1)*(475/(110592*n^(3/2))+9025/(21233664*n^2)-5/(24*sqrt(n))-35/(1152*n)+1)*n^(2*n+1/2).
a(n) ~ exp(-1 + 4*sqrt(n) - 2*n) * n^(2*n + 1/2)/2 * (1 + 19/(24*sqrt(n)) + 589/(1152*n)). - Vaclav Kotesovec, Sep 27 2016

A351823 Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 2, 7, 6, 49, 12, 12, 301, 140, 60, 2281, 1470, 180, 120, 21211, 12642, 2940, 840, 220417, 127736, 41160, 3360, 1680, 2528569, 1527192, 455112, 70560, 15120, 32014801, 19837530, 5748120, 1234800, 75600, 30240, 442974511, 278142590, 83995560, 16687440, 1940400, 332640
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2022

Keywords

Comments

From the asymptotic estimate of A000262(n) provided by Vaclav Kotesovec we deduce that in the limit as n gets big the average number of size 2 lists is equal to 1. In other words, lim_{n->oo} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. Generally for any j >= 1, the average number of size j lists equals 1 in the limit as n -> oo.

Examples

			Triangle T(n,k) begins:
      1;
      1;
      1,     2;
      7,     6;
     49,    12,   12;
    301,   140,   60;
   2281,  1470,  180, 120;
  21211, 12642, 2940, 840;
  ...
		

Crossrefs

Column k=1 gives A113235.
T(n,floor(n/2)) gives A081125.
T(2n,n) gives A001813.
Cf. A000262 (row sums) A006152, A114329, A351825.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
         `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Feb 20 2022
  • Mathematica
    nn = 7; Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: exp(x/(1-x) - x^2 + y*x^2).
Sum_{k=0..floor(n/2)} k * T(n,k) = A351825(n). - Alois P. Heinz, Feb 24 2022

A351825 Total number of size 2 lists in all sets of lists partitioning [n] (cf. A000262).

Original entry on oeis.org

0, 0, 2, 6, 36, 260, 2190, 21042, 226856, 2709576, 35491770, 505620830, 7780224012, 128555409996, 2269569526406, 42625044254730, 848404205856720, 17836074466842512, 394872870912995826, 9181542826326252726, 223680717959853460340, 5697036951307194432660, 151396442683371572351742
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; Range[0, nn]! CoefficientList[Series[D[Exp[ x/(1 - x) - x ^2 + y x^2], y] /. y -> 1, {x, 0, nn}], x]
    Join[{0, 0, 2}, Table[n!*Hypergeometric1F1[n-1, 2, 1]/E, {n, 3, 25}]] (* Vaclav Kotesovec, Feb 21 2022 *)

Formula

a(n) = 2*binomial(n,2)*A000262(n-2).
E.g.f.: x^2*exp(x/(1-x)) = d/dy G(x,y)|y=1 where G(x,y) is the e.g.f. for A351823.
a(n) = Sum_{k=0..floor(n/2)} k * A351823(n,k).
a(n) ~ n^(n - 1/4) * exp(2*sqrt(n) - n - 1/2) / sqrt(2) * (1 - 101/(48*sqrt(n))). - Vaclav Kotesovec, Feb 21 2022
a(n) = 2 * A129652(n,2). - Alois P. Heinz, Feb 22 2022
Recurrence: (n-2)*a(n) = n*(2*n-5)*a(n-1) - (n-4)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Mar 20 2023

A373425 a(n) = A000111(n) * A000262(n). Row sums of A373426.

Original entry on oeis.org

1, 1, 3, 26, 365, 8016, 247111, 10236176, 546178905, 36478244608, 2977762858411, 291550484700672, 33703918027674245, 4540228104291094528, 704744561517173519343, 124836607292749756516352, 25023470823661358817690545, 5634174369285939855014166528, 1415592664236058550974684119763
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Crossrefs

A265608 Triangle read by rows: Bell transform of A000262.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 13, 15, 6, 1, 0, 73, 95, 45, 10, 1, 0, 501, 723, 390, 105, 15, 1, 0, 4051, 6405, 3843, 1190, 210, 21, 1, 0, 37633, 64615, 42462, 14693, 3010, 378, 28, 1, 0, 394353, 730359, 519993, 197442, 45423, 6678, 630, 36, 1
Offset: 0

Views

Author

Peter Luschny, Dec 20 2015

Keywords

Comments

See A264428 and the link for the definition of the Bell transform.

Examples

			[n\k 0      1      2      3      4     5    6   7  8]
[0] [1]
[1] [0,     1]
[2] [0,     1,     1]
[3] [0,     3,     3,     1]
[4] [0,    13,    15,     6,     1]
[5] [0,    73,    95,    45,    10,    1]
[6] [0,   501,   723,   390,   105,   15,   1]
[7] [0,  4051,  6405,  3843,  1190,  210,  21,  1]
[8] [0, 37633, 64615, 42462, 14693, 3010, 378, 28, 1]
		

Crossrefs

Programs

  • Sage
    # uses[bell_transform from A264428]
    def A265608_row(n):
        fact = [factorial(k) for k in (1..n)]
        fact2 = [sum(bell_transform(k, fact)) for k in range(n)]
        return bell_transform(n, fact2)
    [A265608_row(n) for n in (0..9)]

A349780 Triangle read by rows, T(n, k) = A000262(n) - A349776(n, n - k) for n > 0 and T(0, 0) = 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 7, 13, 0, 1, 13, 49, 73, 0, 1, 21, 141, 381, 501, 0, 1, 31, 331, 1531, 3331, 4051, 0, 1, 43, 673, 4873, 17473, 32593, 37633, 0, 1, 57, 1233, 12993, 71793, 212913, 354033, 394353, 0, 1, 73, 2089, 30313, 241993, 1088713, 2782153, 4233673, 4596553
Offset: 0

Views

Author

Peter Luschny, Nov 30 2021

Keywords

Examples

			[0] 1;
[1] 0, 1;
[2] 0, 1,  3;
[3] 0, 1,  7,   13;
[4] 0, 1, 13,   49,    73;
[5] 0, 1, 21,  141,   381,    501;
[6] 0, 1, 31,  331,  1531,   3331,    4051;
[7] 0, 1, 43,  673,  4873,  17473,   32593,   37633;
[8] 0, 1, 57, 1233, 12993,  71793,  212913,  354033, 394353;
[9] 0, 1, 73, 2089, 30313, 241993, 1088713, 2782153, 4233673, 4596553.
		

Crossrefs

Row sums are A052852 for n >= 1.
Previous Showing 21-30 of 261 results. Next