cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A361366 Number of unlabeled simple planar digraphs with n nodes.

Original entry on oeis.org

1, 3, 16, 218, 9026, 907123
Offset: 1

Views

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A005470.

A361590 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with exactly k strongly connected components of size 1.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 5, 5, 0, 6, 90, 55, 42, 0, 31, 5289, 2451, 974, 592, 0, 302, 1071691, 323709, 94332, 29612, 15616, 0, 5984, 712342075, 135208025, 25734232, 6059018, 1650492, 795930, 0, 243668, 1585944117738, 181427072519, 21650983294, 3358042412, 704602272, 174576110, 79512478, 0, 20286025
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
        1;
        0,      1;
        1,      0,     2;
        5,      5,     0,     6;
       90,     55,    42,     0,    31;
     5289,   2451,   974,   592,     0, 302;
  1071691, 323709, 94332, 29612, 15616,   0, 5984;
  ...
		

Crossrefs

Column k=0 is A361586.
Main diagonal is A003087.
Row sums are A000273.
The labeled version is A361592.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361590triang(6)); for(n=1, #A, print(A[n])) }

A003084 Related to number of digraphs.

Original entry on oeis.org

1, 5, 40, 801, 46821, 9185102, 6163297995, 14339791643249, 117235455142196308, 3412474003994007703605, 357748249084029269153547905, 136400554886800212073525651823742, 190697966236731843091458826668123014367, 984418987245772021436902193577676975221669509, 18875177868521443706244256784212908480749407027875180
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 124, table 5.1.2, p*a_p
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 12; se = Series[ Sum[ a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; A003084 = Table[ a[n], {n, 1, max}] /. sol[[1]] (* Jean-François Alcover, Feb 01 2012, after formula *)
    terms = 15;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    CoefficientList[Log[Sum[ d[n] x^n, {n, 0, terms + 1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest (* Jean-François Alcover, Aug 29 2019, after Andrew Howroyd in A000273 *)

Formula

Sum a(n) x^n / n = log (1 + Sum d(n) x^n ), where d(n) is # digraphs on n nodes (A000273).

Extensions

Corrected and extended by Vladeta Jovovic, Jan 09 2000
More terms from Jean-François Alcover, Aug 29 2019

A054590 Number of disconnected digraphs with n unlabeled nodes.

Original entry on oeis.org

0, 1, 3, 19, 244, 10101, 1562298, 885237542, 1795141933300, 13031553571814674, 341286507770733602176, 32523592049568306757117737, 11366810480400463340177768296746, 14669108426561606778443288692015619955, 70315685953531425166863071956073529852161120
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2000

Keywords

Crossrefs

The labeled case is A054593.

Programs

  • Python
    from functools import lru_cache
    from itertools import product
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A054590(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) = A000273(n) - A003085(n).

Extensions

Terms a(14) and beyond from Andrew Howroyd, Apr 18 2021

A054933 Number of unlabeled digraphs on n nodes up to reversing the arcs.

Original entry on oeis.org

1, 3, 13, 144, 5158, 778084, 441288796, 896699384640, 6513980949408584, 170630216624502796000, 16261454692830032538976880, 5683372715412978313604073582912, 7334542846356465411966209047539403296, 35157828307617499762304829312302735958971072, 629172630775224433640531447950565255471723325434560
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A000273(n) + A002499(n))/2.

A055969 Number of unlabeled digraphs with n nodes and an odd number of arcs.

Original entry on oeis.org

0, 1, 6, 104, 4736, 770112, 440994608, 896679244544, 6513978322585408, 170630215971902124288, 16261454692523251085611648, 5683372715412699486531047331840, 7334542846356464931239079919515090432, 35157828307617499760690834338506768579289088
Offset: 1

Views

Author

Vladeta Jovovic, Jul 19 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A000273(n)-A003086(n))/2.

Extensions

Terms a(14) and beyond from Andrew Howroyd, Sep 17 2018

A087616 Number of unlabeled cyclic preferences/voting outcomes, indifference and undecidedness/incompleteness permitted (Social Choice Theory).

Original entry on oeis.org

0, 0, 1, 26, 2491
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Sep 12 2003

Keywords

Crossrefs

Cf. A087615 for the labeled analog, A003087, A087614, A000273.

Formula

Equals A000273 - A087614.

A217654 Triangular array read by rows. T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 13, 2, 0, 1, 202, 13, 2, 0, 1, 9390, 202, 13, 2, 0, 1, 1531336, 9390, 202, 13, 2, 0, 1, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 13026163465206704, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 09 2012

Keywords

Comments

Row sums give A000273.
Column k = 0 is A053598.

Examples

			Triangle T(n,k) begins:
        1;
        0,    1;
        2,    0,   1;
       13,    2,   0,  1;
      202,   13,   2,  0, 1;
     9390,  202,  13,  2, 0, 1;
  1531336, 9390, 202, 13, 2, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
          igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    g:= proc(n) option remember; b(n$2, []) end:
    T:= (n, k)-> g(n-k)-`if`(kAlois P. Heinz, Sep 04 2019
  • Mathematica
    Needs["Combinatorica`"]; f[list_]:=Insert[Select[list,#>0&],0,-2]; nn=10; s=Sum[NumberOfDirectedGraphs[n]x^n, {n,0,nn}]; Drop[Flatten[Map[f, CoefficientList[Series[s (1-x)/(1-y x), {x,0,nn}], {x,y}]]], 1]
    (* Second program: *)
    b[n_, i_, l_List] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[p[[j]] - 1 + Sum[GCD[p[[k]], p[[j]]], {k, 1, j - 1}]*2, {j, 1, Length[p]}]][Join[l, Array[1&, n]]]), Sum[b[n - i*j, i - 1, Join[l, Array[i&, j]]]/j!/i^j, {j, 0, n/i}]];
    g[n_] := g[n] = b[n, n, {}];
    T[n_, k_] := g[n - k] - If[k < n, g[n - k - 1], 0];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)

Formula

O.g.f.: A(x)*(1-x)/(1-y*x) where A(x) is o.g.f. for A000273.

A309980 Number of binary relations on n unlabeled nodes that are neither reflexive nor antireflexive.

Original entry on oeis.org

0, 4, 72, 2608, 272752, 93847104, 110518842048, 454710381676032, 6640565658505128832, 348708024629593894001152, 66538376166308068986316241408, 46534722991725338264882258863095808, 120139253095727581744381043433138973706240, 1151909524447243687554850690730124812494959992832
Offset: 1

Views

Author

Peter Dolland, Nov 02 2019

Keywords

Comments

Also the number of colored digraphs on n unlabeled nodes with nodes of exactly two colors. (Understand "(x,x) in the relation" for several nodes x as a special color!)

Examples

			n=2: We label node 1 with (1,1) in the relation and node 2 with (2,2) not in the relation, and we have two differently labeled nodes and so a(2) = A053763(2) = 4.
n=3: We have exactly either one or two nodes x with (x,x) in the relation. In A328773 this labelings correspond to the color schemes [2,1] and [1,2], both represented by the column index 2. So we have a(3) = 2 * A328773(3,2) = 72.
		

Crossrefs

Cf. A000595 (arbitrary binary relations), A000273 (digraphs, i.e. reflexive resp. antireflexive binary relations), A053763 (digraphs with distinguishing labeled nodes), A328773 (digraphs with given color scheme).

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := Module[{s = 0}, Do[t = 2^edges[p]; s += t*(1 - 2^(1 - Length[p]))* permcount[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 14] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i])}
    a(n) = {my(s=0); forpart(p=n, my(t=2^edges(p)); s+=t*(1 - 2^(1-#p))*permcount(p)); s/n!} \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A000595(n) - 2 * A000273(n) for n >= 1.

A329541 Triangle read by rows: T(n,k) is the number of colored digraphs on n nodes with exactly k colors assigned in a fix order according the node count (1 <= k <= n).

Original entry on oeis.org

1, 3, 4, 16, 36, 64, 218, 1856, 2112, 4096, 9608, 136376, 445440, 528384, 1048576, 1540944, 62020640, 270506880, 449511424, 537919488, 1073741824, 882033440, 55259421024, 435010671104, 1101584588800, 1834672455680, 2200096997376, 4398046511104
Offset: 1

Views

Author

Peter Dolland, Nov 16 2019

Keywords

Comments

The values are just subtotals of the rows of the irregular triangle A328773.
Colors C_1,...,C_k are assigned to n nodes in the way that a_i >= a_(i+1) >= 1 for 1 <= i < k, where a_i denotes the number of nodes colored with C_i.
T(n,k) gives the number of digraphs (see A000273) without restrictions, where nodes of the same color are not differentiated.
The order of the colors effects, that only one color scheme has to be considered for a given color count. If such an order may not be presupposed, you should note A329546.

Examples

			Partitions for n=4, k=2: [3,1] and [2,2] with indices 2 and 3: T(4,2) = Sum_{i=2,3} A328773(4,i) = 752 + 1104 = 1856.
Partitions for n=6, k=3: [4,1,1], [3,2,1], [2,2,2] with indices 4, 6, 8: T(6,3) = Sum_{i=4,6,8} A328773(6,i) = 45277312 + 90196736 + 135032832 = 270506880.
Triangle T(n,k) begins:
        1
        3        4
       16       36        64
      218     1856      2112      4096
     9608   136376    445440    528384   1048576
  1540944 62020640 270506880 449511424 537919488 1073741824
  ...
		

Crossrefs

Cf. A000273 (digraphs with one color), A053763 (digraphs with n colors), A328773 (digraphs to a given color scheme). A329546 (digraphs with unordered colors).

Programs

  • PARI
    \\ here C(p) computes A328773 sequence value for given partition.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
    C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])}
    Row(n)={[vecsum(apply(C, vecsort([Vecrev(p) | p<-partitions(n),#p==m], , 4))) | m<-[1..n]]}
    { for(n=0, 10, print(Row(n))) }

Formula

T(n,1) = A000273(n) = A328773(n,1).
T(n,n) = 2^(n^2-n) = A053763(n) = A328773(n,A000041(n)).
T(n,n-1) = A328773(n,A000041(n)-1).
T(n,k) = Sum_{i=1..A000041(n), A063008(n,i) encodes a partition p with k=#p} A328773(n,i).
Previous Showing 21-30 of 50 results. Next