A282988
Triangle of partitions of an n-set into boxes of size >= m.
Original entry on oeis.org
1, 2, 1, 5, 1, 1, 15, 4, 1, 1, 52, 11, 1, 1, 1, 203, 41, 11, 1, 1, 1, 877, 162, 36, 1, 1, 1, 1, 4140, 715, 92, 36, 1, 1, 1, 1, 21147, 3425, 491, 127, 1, 1, 1, 1, 1, 115975, 17722, 2557, 337, 127, 1, 1, 1, 1, 1, 678570, 98253, 11353, 793, 463, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle T(n,m) begins:
1;
2, 1;
5, 1, 1;
15, 4, 1, 1;
52, 11, 1, 1, 1;
203, 41, 11, 1, 1, 1;
877, 162, 36, 1, 1, 1, 1;
...
-
T:= proc(n, k) option remember; `if`(n=0, 1, add(
T(n-j, k)*binomial(n-1, j-1), j=k..n))
end:
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Sep 28 2017
-
T[n_, m_] := T[n, m] = Which[Or[n == m, n == 0], 1, m == 0, 0, True, Sum[Binomial[n - 1, i + m - 1] T[n - i - m, m], {i, 0, n - m}]]; Table[T[n, m], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, Feb 26 2017 *)
-
T(n,m):=if n=m or n=0 then 1 else if m=0 then 0 else sum(binomial(n-1, i+m-1)*T(n-i-m,m), i, 0, n-m);
A306416
Number of ordered set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 2, 0, 26, 84, 950, 6000, 62522, 556116, 6259598, 69319848, 874356338, 11384093196, 161462123894, 2397736692144, 37994808171962, 631767062124564, 11088109048500158, 203828700127054008, 3928762035148317314, 79079452776283889820, 1661265965479375937030, 36332908076071038467520, 826376466514358722894154
Offset: 0
The a(4) = 2 ordered set partitions are: {{1,3},{2,4}}, {{2,4},{1,3}}.
Cf.
A000110,
A000126,
A000296,
A000670,
A001610,
A032032 (adjacencies allowed),
A052841 (singletons allowed),
A124323,
A169985,
A306417,
A324011 (orderless case),
A324012,
A324015.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Sum[Length[stn]!,{stn,Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]}],{n,0,10}]
A306418
Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} requiring k steps of removing singletons and cyclical adjacency initiators until reaching a fixed point, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 0, 2, 3, 0, 1, 2, 12, 0, 0, 0, 12, 35, 5, 0, 0, 5, 56, 100, 42, 0, 0, 0, 14, 282, 343, 231, 7, 0, 0, 0, 66, 1406, 1476, 1088, 104, 0, 0, 0, 0, 307, 7592, 7383, 4929, 909, 27, 0, 0, 0, 0, 1554, 44227, 40514, 22950, 6240, 470, 20, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
0 1
0 2 0
0 2 3 0
1 2 12 0 0
0 12 35 5 0 0
5 56 100 42 0 0 0
14 282 343 231 7 0 0 0
66 1406 1476 1088 104 0 0 0 0
307 7592 7383 4929 909 27 0 0 0 0
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
qbj[stn_]:=With[{ini=Join@@Table[Select[s,If[#==Max@@Max@@@stn,MemberQ[s,First[Union@@stn]],MemberQ[s,(Union@@stn)[[Position[Union@@stn,#][[1,1]]+1]]]]&],{s,stn}],sng=Join@@Select[stn,Length[#]==1&]},DeleteCases[Table[Complement[s,Union[sng,ini]],{s,stn}],{}]];
Table[Length[Select[sps[Range[n]],Length[FixedPointList[qbj,#]]-2==k&]],{n,0,8},{k,0,n}]
A332248
Number of set partitions of [n] where all prime-indexed blocks are not singletons.
Original entry on oeis.org
1, 1, 1, 2, 5, 15, 60, 286, 1423, 7185, 37758, 212596, 1293577, 8415869, 57715274, 414520958, 3125102795, 24880061105, 209909409566, 1871945790360, 17503956383037, 169851122851049, 1694189515772750, 17248694322541778, 178473482993477591, 1873036127628583885
Offset: 0
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 2: 123, 1|23.
a(4) = 5: 1234, 12|34, 13|24, 14|23, 1|234.
a(5) = 15: 12345, 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 1|23|45, 1|24|35, 1|25|34.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, i+1)*
binomial(n-1, j-1), j=`if`(isprime(i), 2, 1)..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..32);
-
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, i+1] Binomial[n-1, j-1], {j, If[PrimeQ[i], 2, 1], n}]];
a[n_] := b[n, 1];
a /@ Range[0, 32] (* Jean-François Alcover, May 08 2020, after Maple *)
A347432
E.g.f.: exp( exp(x) * (exp(x) - 1 - x) ).
Original entry on oeis.org
1, 0, 1, 4, 14, 66, 397, 2626, 18797, 148238, 1281134, 11943790, 118998365, 1262189748, 14203022537, 168835162632, 2111832477426, 27708387132906, 380355066174121, 5449577398256414, 81316095965242989, 1261149374033472626, 20293627142875917978, 338263983223664609198
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*(2^j-j-1), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 02 2021
-
nmax = 23; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
A355338
Expansion of e.g.f.: exp(exp(x) - x^2 - 1).
Original entry on oeis.org
1, 1, 0, -1, 3, 12, -7, -47, 332, 1347, -2105, -4200, 135457, 474697, -900832, 4682135, 126196787, 439488524, 233313817, 19129265609, 239146712732, 1104038984091, 5891696027079, 89831511761320, 911995655018817, 6253185308181553, 54873149768926624, 653039078246798383
Offset: 0
-
nmax = 30; CoefficientList[Series[Exp[Exp[x] - x^2 - 1], {x, 0, nmax}], x] * Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(exp(x) - x^2 - 1))) \\ Michel Marcus, Jun 29 2022
A358623
Regular triangle read by rows. T(n, k) = {{n, k}}, where {{n, k}} are the second order Stirling set numbers (or second order Stirling numbers). T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 10, 0, 0, 0, 0, 1, 25, 15, 0, 0, 0, 0, 1, 56, 105, 0, 0, 0, 0, 0, 1, 119, 490, 105, 0, 0, 0, 0, 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0, 0, 1, 501, 6825, 9450, 945, 0, 0, 0, 0, 0, 0, 1, 1012, 22935, 56980, 17325, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1, 0;
[3] 0, 1, 0, 0;
[4] 0, 1, 3, 0, 0;
[5] 0, 1, 10, 0, 0, 0;
[6] 0, 1, 25, 15, 0, 0, 0;
[7] 0, 1, 56, 105, 0, 0, 0, 0;
[8] 0, 1, 119, 490, 105, 0, 0, 0, 0;
[9] 0, 1, 246, 1918, 1260, 0, 0, 0, 0, 0;
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.
A008299 is an irregular subtriangle with more information.
A358622 (second order Stirling cycle numbers).
-
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j)*(-1)^(k - j),
j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Using the e.g.f.:
egf := exp(z*(exp(t) - t - 1)): ser := series(egf, t, 12):
seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k = 0..n)), n = 0..9);
# Using second order Eulerian numbers:
A358623 := proc(n, k) if n = 0 then return 1 fi;
add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, n - k - j - 1), j = 0..n-k-1)
end: seq(seq(A358623(n, k), k = 0..n), n = 0..11);
-
# recursion over rows
from functools import cache
@cache
def StirlingSetOrd2(n: int) -> list[int]:
if n == 0: return [1]
if n == 1: return [0, 0]
rov: list[int] = StirlingSetOrd2(n - 2)
row: list[int] = StirlingSetOrd2(n - 1) + [0]
for k in range(1, n // 2 + 1):
row[k] = (n - 1) * rov[k - 1] + k * row[k]
return row
for n in range(9): print(StirlingSetOrd2(n))
# Alternative, using function BellMatrix from A264428.
def f(k: int) -> int:
return 1 if k > 0 else 0
print(BellMatrix(f, 9))
A365338
Expansion of e.g.f. exp( Sum_{k>=0} x^(3*k+2) / (3*k+2)! ).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 15, 21, 106, 378, 1116, 6931, 20196, 136500, 558559, 3103191, 18524418, 90852217, 661904622, 3569749659, 25657118047, 171935108541, 1149965503347, 9166884110308, 62758177512570, 525194926694256, 4072360499426311, 33295056117878646
Offset: 0
A365419
Expansion of e.g.f. exp( Sum_{k>=0} x^(5*k+2) / (5*k+2)! ).
Original entry on oeis.org
1, 0, 1, 0, 3, 0, 15, 1, 105, 36, 945, 990, 10396, 25740, 136942, 675675, 2238405, 18378361, 50490765, 523833819, 1665638325, 15790609395, 71976549646, 515107015830, 3524757498023, 19222751356875, 181500385651325, 888496839591076, 9603885700913400
Offset: 0
A367890
Expansion of e.g.f. exp(3*(exp(x) - 1 - x)).
Original entry on oeis.org
1, 0, 3, 3, 30, 93, 633, 3342, 22809, 156063, 1183872, 9453711, 80455125, 721576560, 6809391111, 67332650007, 695777512638, 7493572404345, 83926492573341, 975467527353750, 11744536832206149, 146234590864310019, 1880198749437144456, 24928860500681953683
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023
Comments