cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 587 results. Next

A345911 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 1.

Original entry on oeis.org

1, 6, 7, 20, 21, 26, 27, 30, 31, 72, 73, 82, 83, 86, 87, 92, 93, 100, 101, 106, 107, 110, 111, 116, 117, 122, 123, 126, 127, 272, 273, 290, 291, 294, 295, 300, 301, 312, 313, 324, 325, 330, 331, 334, 335, 340, 341, 346, 347, 350, 351, 360, 361, 370, 371, 374
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     1: (1)
     6: (1,2)
     7: (1,1,1)
    20: (2,3)
    21: (2,2,1)
    26: (1,2,2)
    27: (1,2,1,1)
    30: (1,1,1,2)
    31: (1,1,1,1,1)
    72: (3,4)
    73: (3,3,1)
    82: (2,3,2)
    83: (2,3,1,1)
    86: (2,2,1,2)
    87: (2,2,1,1,1)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for Heinz numbers of partitions is A001105.
A version using runs of binary digits is A066879.
These are positions of 1's in A344618.
The non-reverse version is A345909.
The opposite (negative 1) version is A345912.
The version for prime indices is A345958.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==1&]

A345913 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum >= 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()           17: (4,1)          37: (3,2,1)
     1: (1)          18: (3,2)          38: (3,1,2)
     2: (2)          19: (3,1,1)        39: (3,1,1,1)
     3: (1,1)        21: (2,2,1)        41: (2,3,1)
     4: (3)          22: (2,1,2)        42: (2,2,2)
     5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
     7: (1,1,1)      26: (1,2,2)        44: (2,1,3)
     8: (4)          28: (1,1,3)        45: (2,1,2,1)
     9: (3,1)        29: (1,1,2,1)      46: (2,1,1,2)
    10: (2,2)        31: (1,1,1,1,1)    47: (2,1,1,1,1)
    11: (2,1,1)      32: (6)            50: (1,3,2)
    13: (1,2,1)      33: (5,1)          52: (1,2,3)
    14: (1,1,2)      34: (4,2)          53: (1,2,2,1)
    15: (1,1,1,1)    35: (4,1,1)        55: (1,2,1,1,1)
    16: (5)          36: (3,3)          56: (1,1,4)
		

Crossrefs

These compositions are counted by A116406.
These are the positions of terms >= 0 in A124754.
The version for prime indices is A344609.
The reverse-alternating sum version is A345914.
The opposite (k <= 0) version is A345915.
The strict (k > 0) version is A345917.
The complement is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>=0&]

A300396 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that 2*x or y is a power of 4 (including 4^0 = 1) and x + 63*y = 2^(2k+1) for some k = 0,1,2,....

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 2, 2, 4, 1, 2, 1, 1, 2, 4, 3, 1, 1, 2, 1, 6, 2, 2, 2, 5, 1, 4, 1, 2, 6, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 2, 1, 7, 3, 1, 4, 1, 2, 8, 1, 3, 7, 3, 4, 6, 3, 4, 4, 6, 4, 3, 2, 4, 3, 1, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 5, 13, 25, 29, 59, 61, 79, 91, 95, 101, 103, 1315, 2^k (k = 1,2,3,...), 2^(2k+1)*m (k = 0,1,2,... and m = 3, 5, 7, 11, 15, 19, 23, 887).
This is stronger than the conjecture that A300360(n) > 0 for all n > 1. Note that a(387) = 3 < A300360(387) = 4 and a(1774) = 1 < A300360(1774) = 2.
We have verified that a(n) > 0 for all n = 2..10^7.
See also A299537, A299794 and A300219 for similar conjectures.

Examples

			a(29) = 1 since 29^2 = 2^2 + 2^2 + 7^2 + 28^2 with 2*2 = 4^1 and 2 + 63*2 = 2^7.
a(86) = 2 since 65^2 + 1^2 + 19^2 + 53^2 = 65^2 + 1^2 + 31^2 + 47^2 with 1 = 4^0 and 65 + 63*1 = 2^7.
a(1774) = 1 since 1774^2 = 8^2 + 520^2 + 14^2 + 1696^2 with 2*8 = 4^2 and 8 + 63*520 = 2^15.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]];
    tab={};Do[r=0;Do[If[Pow[y]||Pow[(2*4^k-63y)/2],Do[If[SQ[n^2-y^2-(2*4^k-63y)^2-z^2],r=r+1],{z,0,Sqrt[Max[0,(n^2-y^2-(2*4^k-63y)^2)/2]]}]],{k,0,Log[4,Sqrt[63^2+1]*n/2]},{y,0,Min[n,2*4^k/63]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A345909 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum 1.

Original entry on oeis.org

1, 5, 7, 18, 21, 23, 26, 29, 31, 68, 73, 75, 78, 82, 85, 87, 90, 93, 95, 100, 105, 107, 110, 114, 117, 119, 122, 125, 127, 264, 273, 275, 278, 284, 290, 293, 295, 298, 301, 303, 308, 313, 315, 318, 324, 329, 331, 334, 338, 341, 343, 346, 349, 351, 356, 361
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2021

Keywords

Comments

The alternating sum of a composition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      1: (1)             87: (2,2,1,1,1)
      5: (2,1)           90: (2,1,2,2)
      7: (1,1,1)         93: (2,1,1,2,1)
     18: (3,2)           95: (2,1,1,1,1,1)
     21: (2,2,1)        100: (1,3,3)
     23: (2,1,1,1)      105: (1,2,3,1)
     26: (1,2,2)        107: (1,2,2,1,1)
     29: (1,1,2,1)      110: (1,2,1,1,2)
     31: (1,1,1,1,1)    114: (1,1,3,2)
     68: (4,3)          117: (1,1,2,2,1)
     73: (3,3,1)        119: (1,1,2,1,1,1)
     75: (3,2,1,1)      122: (1,1,1,2,2)
     78: (3,1,1,2)      125: (1,1,1,1,2,1)
     82: (2,3,2)        127: (1,1,1,1,1,1,1)
     85: (2,2,2,1)      264: (5,4)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for prime indices is A001105.
A version using runs of binary digits is A031448.
These are the positions of 1's in A124754.
The opposite (negative 1) version is A345910.
The reverse version is A345911.
The version for Heinz numbers of partitions is A345958.
Standard compositions: A000120, A066099, A070939, A124754, A228351, A344618.
A000070 counts partitions with alternating sum 1 (ranked by A345957).
A000097 counts partitions with alternating sum 2 (ranked by A345960).
A011782 counts compositions.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909 (this sequence)/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==1&]

A345919 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum < 0.

Original entry on oeis.org

6, 12, 20, 24, 25, 27, 30, 40, 48, 49, 51, 54, 60, 72, 80, 81, 83, 86, 92, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 111, 116, 120, 121, 123, 126, 144, 160, 161, 163, 166, 172, 184, 192, 193, 194, 195, 197, 198, 199, 202, 204, 205, 207, 212, 216, 217, 219
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      6: (1,2)         81: (2,4,1)
     12: (1,3)         83: (2,3,1,1)
     20: (2,3)         86: (2,2,1,2)
     24: (1,4)         92: (2,1,1,3)
     25: (1,3,1)       96: (1,6)
     27: (1,2,1,1)     97: (1,5,1)
     30: (1,1,1,2)     98: (1,4,2)
     40: (2,4)         99: (1,4,1,1)
     48: (1,5)        101: (1,3,2,1)
     49: (1,4,1)      102: (1,3,1,2)
     51: (1,3,1,1)    103: (1,3,1,1,1)
     54: (1,2,1,2)    106: (1,2,2,2)
     60: (1,1,1,3)    108: (1,2,1,3)
     72: (3,4)        109: (1,2,1,2,1)
     80: (2,5)        111: (1,2,1,1,1,1)
		

Crossrefs

The version for Heinz numbers of partitions is A119899.
These are the positions of terms < 0 in A124754.
These compositions are counted by A294175 (even bisection: A008549).
The complement is A345913.
The weak (k <= 0) version is A345915.
The opposite (k < 0) version is A345917.
The version for reversed alternating sum is A345920.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]<0&]

A345922 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 2.

Original entry on oeis.org

2, 11, 12, 14, 37, 40, 42, 47, 51, 52, 54, 59, 60, 62, 137, 144, 146, 151, 157, 163, 164, 166, 171, 172, 174, 181, 184, 186, 191, 197, 200, 202, 207, 211, 212, 214, 219, 220, 222, 229, 232, 234, 239, 243, 244, 246, 251, 252, 254, 529, 544, 546, 551, 557, 569
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      2: (2)            144: (3,5)
     11: (2,1,1)        146: (3,3,2)
     12: (1,3)          151: (3,2,1,1,1)
     14: (1,1,2)        157: (3,1,1,2,1)
     37: (3,2,1)        163: (2,4,1,1)
     40: (2,4)          164: (2,3,3)
     42: (2,2,2)        166: (2,3,1,2)
     47: (2,1,1,1,1)    171: (2,2,2,1,1)
     51: (1,3,1,1)      172: (2,2,1,3)
     52: (1,2,3)        174: (2,2,1,1,2)
     54: (1,2,1,2)      181: (2,1,2,2,1)
     59: (1,1,2,1,1)    184: (2,1,1,4)
     60: (1,1,1,3)      186: (2,1,1,2,2)
     62: (1,1,1,1,2)    191: (2,1,1,1,1,1,1)
    137: (4,3,1)        197: (1,4,2,1)
		

Crossrefs

These compositions are counted by A088218.
The case of partitions is counted by A120452.
These are the positions of 2's in A344618.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==2&]

A345923 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -2.

Original entry on oeis.org

9, 34, 39, 45, 49, 57, 132, 139, 142, 149, 154, 159, 161, 169, 178, 183, 189, 194, 199, 205, 209, 217, 226, 231, 237, 241, 249, 520, 531, 534, 540, 549, 554, 559, 564, 571, 574, 577, 585, 594, 599, 605, 612, 619, 622, 629, 634, 639, 642, 647, 653, 657, 665
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      9: (3,1)            183: (2,1,2,1,1,1)
     34: (4,2)            189: (2,1,1,1,2,1)
     39: (3,1,1,1)        194: (1,5,2)
     45: (2,1,2,1)        199: (1,4,1,1,1)
     49: (1,4,1)          205: (1,3,1,2,1)
     57: (1,1,3,1)        209: (1,2,4,1)
    132: (5,3)            217: (1,2,1,3,1)
    139: (4,2,1,1)        226: (1,1,4,2)
    142: (4,1,1,2)        231: (1,1,3,1,1,1)
    149: (3,2,2,1)        237: (1,1,2,1,2,1)
    154: (3,1,2,2)        241: (1,1,1,4,1)
    159: (3,1,1,1,1,1)    249: (1,1,1,1,3,1)
    161: (2,5,1)          520: (6,4)
    169: (2,2,3,1)        531: (5,3,1,1)
    178: (2,1,3,2)        534: (5,2,1,2)
		

Crossrefs

These compositions are counted by A088218.
These are the positions of 2's in A344618.
The case of partitions of 2n is A344741.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==-2&]

A345924 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum -2.

Original entry on oeis.org

12, 40, 49, 51, 54, 60, 144, 161, 163, 166, 172, 184, 194, 197, 199, 202, 205, 207, 212, 217, 219, 222, 232, 241, 243, 246, 252, 544, 577, 579, 582, 588, 600, 624, 642, 645, 647, 650, 653, 655, 660, 665, 667, 670, 680, 689, 691, 694, 700, 720, 737, 739, 742
Offset: 1

Views

Author

Gus Wiseman, Jul 11 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
     12: (1,3)          202: (1,3,2,2)        582: (3,4,1,2)
     40: (2,4)          205: (1,3,1,2,1)      588: (3,3,1,3)
     49: (1,4,1)        207: (1,3,1,1,1,1)    600: (3,2,1,4)
     51: (1,3,1,1)      212: (1,2,2,3)        624: (3,1,1,5)
     54: (1,2,1,2)      217: (1,2,1,3,1)      642: (2,6,2)
     60: (1,1,1,3)      219: (1,2,1,2,1,1)    645: (2,5,2,1)
    144: (3,5)          222: (1,2,1,1,1,2)    647: (2,5,1,1,1)
    161: (2,5,1)        232: (1,1,2,4)        650: (2,4,2,2)
    163: (2,4,1,1)      241: (1,1,1,4,1)      653: (2,4,1,2,1)
    166: (2,3,1,2)      243: (1,1,1,3,1,1)    655: (2,4,1,1,1,1)
    172: (2,2,1,3)      246: (1,1,1,2,1,2)    660: (2,3,2,3)
    184: (2,1,1,4)      252: (1,1,1,1,1,3)    665: (2,3,1,3,1)
    194: (1,5,2)        544: (4,6)            667: (2,3,1,2,1,1)
    197: (1,4,2,1)      577: (3,6,1)          670: (2,3,1,1,1,2)
    199: (1,4,1,1,1)    579: (3,5,1,1)        680: (2,2,2,4)
		

Crossrefs

These compositions are counted by A002054.
These are the positions of -2's in A124754.
The version for reverse-alternating sum is A345923.
The opposite (positive 2) version is A345925.
The version for Heinz numbers of partitions is A345962.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==-2&]

A345925 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum 2.

Original entry on oeis.org

2, 9, 11, 14, 34, 37, 39, 42, 45, 47, 52, 57, 59, 62, 132, 137, 139, 142, 146, 149, 151, 154, 157, 159, 164, 169, 171, 174, 178, 181, 183, 186, 189, 191, 200, 209, 211, 214, 220, 226, 229, 231, 234, 237, 239, 244, 249, 251, 254, 520, 529, 531, 534, 540, 546
Offset: 1

Views

Author

Gus Wiseman, Jul 11 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and corresponding compositions:
      2: (2)            137: (4,3,1)
      9: (3,1)          139: (4,2,1,1)
     11: (2,1,1)        142: (4,1,1,2)
     14: (1,1,2)        146: (3,3,2)
     34: (4,2)          149: (3,2,2,1)
     37: (3,2,1)        151: (3,2,1,1,1)
     39: (3,1,1,1)      154: (3,1,2,2)
     42: (2,2,2)        157: (3,1,1,2,1)
     45: (2,1,2,1)      159: (3,1,1,1,1,1)
     47: (2,1,1,1,1)    164: (2,3,3)
     52: (1,2,3)        169: (2,2,3,1)
     57: (1,1,3,1)      171: (2,2,2,1,1)
     59: (1,1,2,1,1)    174: (2,2,1,1,2)
     62: (1,1,1,1,2)    178: (2,1,3,2)
    132: (5,3)          181: (2,1,2,2,1)
		

Crossrefs

These compositions are counted by A088218.
These are the positions of 2's in A124754.
The case of partitions of 2n is A344741.
The version for reverse-alternating sum is A345922.
The opposite (negative 2) version is A345924.
The version for Heinz numbers of partitions is A345960 (reverse: A345961).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==2&]

A010685 Period 2: repeat (1,4).

Original entry on oeis.org

1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction of (1 + sqrt(2))/2. - R. J. Mathar, Nov 21 2011
This sequence can be generated by an infinite number of formulas all having the form a^(b*n) mod c subject to the following conditions. The number a can be congruent to either 2,3, or 4 mod 5 (A047202). If a is congruent to 2 or 3 mod 5, then b can be any number of the form 4k+2 and c = 5 or 15. If a is congruent to 4 mod 5, then b can be any number of the form 2k+1 and c = 5. For example: a(n) = 29^(13*n) mod 5, a(n) = 24^(11*n) mod 5, and a(n) = 22^(10*n) mod 15. - Gary Detlefs, May 19 2014

Crossrefs

Cf. sequences listed in Comments section of A283393.
Cf. A047202.

Programs

  • Magma
    [Modexp(4,n,5): n in [0..100]]; // G. C. Greubel, Nov 22 2021
  • Maple
    A010685 := proc(n)
        if type(n,'even') then
            1 ;
        else
            4;
        end if;
    end proc: # R. J. Mathar, Aug 03 2015
  • Mathematica
    Table[(5-3(-1)^n)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 26 2014 *)
    PadRight[{},120,{1,4}] (* Harvey P. Dale, Aug 08 2022 *)
  • PARI
    values(m)=my(v=[]);for(i=1,m,v=concat([1,4],v));v; /* Anders Hellström, Aug 03 2015 */
    
  • Sage
    [power_mod(4,n,5)for n in range(0,81)] # Zerinvary Lajos, Nov 26 2009
    

Formula

a(2n) = 1, a(2n+1) = 4.
From Paul Barry, Jun 03 2003: (Start)
G.f.: (1+4*x)/((1-x)*(1+x)).
E.g.f.: (5*exp(x) - 3*exp(-x))/2.
a(n) = (5 - 3*(-1)^n)/2.
a(n) = 4^((1-(-1)^n)/2) = 2^(1-(-1)^n) = 2/(2^((-1)^n)).
a(n) = 4^(ceiling(n/2) - floor(n/2)). (End)
a(n) = gcd((n-1)^2, (n+1)^2). - Paul Barry, Sep 16 2004
a(n) = A160700(A000302(n)). - Reinhard Zumkeller, Jun 10 2009
a(n) = 4^n mod 5. - Zerinvary Lajos, Nov 26 2009
a(n) = 4^(n mod 2). - Wesley Ivan Hurt, Mar 29 2014
Previous Showing 81-90 of 587 results. Next