cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A053411 Circle numbers (version 1): a(n)= number of points (i,j), i,j integers, contained in a circle of diameter n, centered at the origin.

Original entry on oeis.org

1, 1, 5, 9, 13, 21, 29, 37, 49, 69, 81, 97, 113, 137, 149, 177, 197, 225, 253, 293, 317, 349, 377, 421, 441, 489, 529, 577, 613, 665, 709, 749, 797, 861, 901, 973, 1009, 1085, 1129, 1201, 1257, 1313, 1373, 1457, 1517, 1597, 1653, 1741, 1793, 1885, 1961
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 10 2000

Keywords

Comments

a(n)/(n/2)^2 -> Pi.

Crossrefs

Bisections: A000328 and A036704.

Programs

  • Mathematica
    a[n_] := (m = Ceiling[n/2]; Sum[Boole[i^2 + j^2 <= n^2/4], {i, -m, m}, {j, -Ceiling @ Sqrt[ m^2 - i^2 ], Ceiling @ Sqrt[ m^2 - i^2 ]}]); Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 06 2013 *)

A049735 Array T(i,j) is the number of lattice points (x,y) in circle with radius (0,0)-to-(i,j), read by antidiagonals.

Original entry on oeis.org

1, 5, 5, 13, 9, 13, 29, 21, 21, 29, 49, 37, 25, 37, 49, 81, 57, 45, 45, 57, 81, 113, 89, 69, 61, 69, 89, 113, 149, 121, 97, 81, 81, 97, 121, 149, 197, 161, 129, 109, 101, 109, 129, 161, 197, 253, 213, 177, 145, 137, 137, 145, 177, 213, 253
Offset: 0

Views

Author

Keywords

Comments

Specifically, x^2 + y^2 <= i^2 + j^2.

Examples

			Antidiagonals (each starting on row 0):
  {1},
  {5, 5},
  {13, 9, 13},
  ...
Array begins:
   1  5 13  29  49  81
   5  9 21  37  57  89
  13 21 25  45  69  97
  29 37 45  61  81 109
  49 57 69  81 101 137
  81 89 97 109 137 161
		

Crossrefs

Cf. A000328 (1st column or row).

Programs

  • PARI
    T(n, k) = my(z=norml2([n, k]), m=ceil(sqrt(2)*max(n,k))); sum(x=-m, m, sum(y=-m, m, norml2([x, y]) <= z)); \\ Michel Marcus, Aug 07 2021

Formula

T(n,0) = A000328(n).

A247588 Number of integer-sided acute triangles with largest side n.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 13, 15, 17, 21, 25, 27, 31, 34, 39, 43, 48, 52, 56, 63, 67, 73, 80, 84, 90, 96, 104, 111, 117, 126, 132, 140, 147, 154, 165, 172, 183, 189, 198, 210, 219, 229, 237, 247, 260, 270, 282, 292, 302
Offset: 1

Views

Author

Vladimir Letsko, Sep 20 2014

Keywords

Examples

			a(3) = 3 because there are 3 integer-sided acute triangles with largest side 3: (1,3,3); (2,3,3); (3,3,3).
		

Crossrefs

Programs

  • Maple
    tr_a:=proc(n) local a,b,t,d;t:=0:
    for a to n do
    for b from max(a,n+1-a) to n do
    d:=a^2+b^2-n^2:
    if d>0 then t:=t+1 fi
    od od;
    t; end;
  • Mathematica
    a[ n_] := Length @ FindInstance[ n >= b >= a >= 1 && n < b + a && n^2 < b^2 + a^2, {a, b}, Integers, 10^9]; (* Michael Somos, May 24 2015 *)
  • PARI
    a(n) = sum(j=0, n*(1 - sqrt(2)/2), n - j - floor(sqrt(2*j*n - j^2))); \\ Michel Marcus, Oct 07 2014
    
  • PARI
    {a(n) = sum(j=0, n - sqrtint(n*n\2) - 1, n - j - sqrtint(2*j*n - j*j))}; /* Michael Somos, May 24 2015 */

Formula

a(n) = Sum_{j=0..floor(n*(1 - sqrt(2)/2))} (n - j - floor(sqrt(2*j*n - j^2))). - Anton Nikonov, Oct 06 2014
a(n) = (1/8)*(-4*ceiling((n - 1)/sqrt(2)) + 4*n^2 - A000328(n) + 1), n > 1. - Mats Granvik, May 23 2015

A046112 a(n) is smallest integral radius of circle centered at (0,0) having 8n-4 lattice points on its circumference; a(n)/2 is smallest half-integral radius circle centered at (1/2,0) having 4n-2 lattice points; a(n)/3 is smallest third-integral radius circle centered at (1/3,0) having 2n-1 lattice points.

Original entry on oeis.org

1, 5, 25, 125, 65, 3125, 15625, 325, 390625, 1953125, 1625, 48828125, 4225, 1105, 6103515625, 30517578125, 40625, 21125, 3814697265625, 203125, 95367431640625, 476837158203125, 5525, 11920928955078125, 274625
Offset: 1

Views

Author

Keywords

Crossrefs

Except for offset, same as A006339.

A036702 a(n)=number of Gaussian integers z=a+bi satisfying |z|<=n, a>=0, 0<=b<=a.

Original entry on oeis.org

1, 2, 4, 7, 10, 15, 20, 25, 32, 40, 49, 57, 66, 78, 89, 102, 114, 128, 142, 158, 175, 190, 209, 227, 245, 267, 288, 310, 331, 354, 379, 402, 429, 455, 483, 512, 538, 569, 597, 631, 663, 693, 727, 761, 798, 834, 868, 906, 943, 983
Offset: 0

Views

Author

Keywords

Comments

Row sums of the irregular triangle A255250. - Wolfdieter Lang, Mar 15 2015

Crossrefs

Programs

  • Maple
    A036702 := proc(n)
            local a,x,y ;
            a := 0 ;
            for x from 0 do
                    if x^2 > n^2 then
                            return a;
                    fi ;
                    for y from 0 to x do
                            if y^2+x^2 <= n^2 then
                                    a := a+1 ;
                            end if;
                    end do;
            end do:
    end proc: # R. J. Mathar, Oct 29 2011
  • Mathematica
    a[n_] := Module[{a, b}, If[n == 0, 1, Reduce[a^2 + b^2 <= n^2 && a >= 0 && 0 <= b <= a, {a, b}, Integers] // Length]];
    a /@ Range[0, 49] (* Jean-François Alcover, Oct 17 2019 *)

Formula

a(n) - A036700(n) = 1+A049472(n). - R. J. Mathar, Oct 29 2011
a(n) = sum(floor(sqrt(n^2 - m^2)) - (m-1), m = 0.. floor(n/sqrt(2))), n >= 0. See A255250. - Wolfdieter Lang, Mar 15 2015

A062711 Number of prime Gaussian integers z=a+bi with |z|<=n.

Original entry on oeis.org

0, 1, 4, 6, 8, 10, 15, 19, 21, 25, 32, 34, 38, 44, 46, 52, 60, 66, 73, 79, 87, 93, 98, 104, 114, 122, 128, 138, 146, 154, 163, 173, 181, 193, 203, 213, 221, 231, 239, 245, 259, 273, 280, 294, 304, 316, 327, 343, 359, 369
Offset: 1

Views

Author

Reiner Martin, Jul 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    m = 50;
    t = Table[x + y I, {x, -m, m}, {y, -m, m}] // Flatten[#, 1]& // Select[#, PrimeQ[#, GaussianIntegers -> True]& ]& // Sort // DeleteDuplicates[#, Abs[#1] == Abs[#2] && MatchQ[#1 /#2 , 1|-1|I|-I]& ]&;
    a[n_] := Select[t, Abs[#] <= n&] // Length;
    Array[a, m] (* Jean-François Alcover, Jul 29 2016 *)

Formula

Two prime Gaussian integers are not counted separately if they are associated, i.e. if their quotient is a unit (1, i, -1 or -i).
Similar to the ordinary prime number theorem (see A000720) we have the asymptotic expression: a(n) ~ n^2/(2 * log(n)) - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 16 2001
a(1)=0, a(n)=1+A066339(n^2)+A066490(n) for n>0. - T. D. Noe, Feb 20 2007

A077770 Number of ordered pairs of integers (x,y) with n^2 < x^2 + y^2 < (n+1)^2; number of lattice points between circles of radii n and n+1.

Original entry on oeis.org

0, 4, 12, 16, 20, 28, 32, 44, 52, 52, 56, 60, 76, 80, 84, 84, 92, 104, 116, 116, 112, 140, 132, 136, 148, 148, 164, 160, 164, 180, 176, 204, 196, 204, 216, 196, 228, 216, 252, 236, 224, 260, 260, 284, 272, 260, 292, 288, 308, 300, 316, 312, 300, 332, 320, 364
Offset: 0

Views

Author

T. D. Noe, Nov 20 2002

Keywords

Comments

Note that 2*A077768(n)-a(n)/4 is the characteristic sequence for the Beatty sequence A001951(n).

Crossrefs

Programs

  • Mathematica
    Table[Sum[SquaresR[2, k], {k, n^2 + 1, (n + 1)^2 - 1}], {n, 0, 100}]

Formula

a(n) = A051132(n+1) - A000328(n)

A093832 Values of r such that N(r)/r^2 > Pi, where N(r) is the number of integer lattice points (x,y) inside or on a circle of radius r.

Original entry on oeis.org

1, 2, 3, 5, 10, 15, 20, 35, 51, 52, 85, 100, 230, 247, 370, 425, 489, 725, 730, 1073, 1310, 1865, 1997, 2480, 2831, 3072, 3424, 3750, 3861, 3921, 4025, 4339, 4771, 4885, 5559, 5949, 6203, 6411, 7045, 7084, 7410, 7605, 8931, 9308, 9435, 9646, 10829, 10930
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2004

Keywords

Crossrefs

Programs

  • PARI
    A000328(n) = local(x, y, c, nn); c = 0; x = 0; nn = n*n; y = n; while (x < y, c += x; y--; x = sqrtint(nn - y*y)); 4*(n - y) + 8*c + (2*y + 1)^2; for (n = 1, 100000, if (A000328(n) > Pi*n*n, print(n))); \\ David Wasserman, Dec 05 2006

Extensions

Corrected and extended by David Wasserman, Dec 05 2006
Name corrected by Luis Mendo, Sep 24 2023

A093837 Denominator of N(n)/n^2, where N(n) is the number of lattice points (x,y) with x^2 + y^2 <= n^2.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 16, 169, 196, 225, 256, 17, 324, 361, 400, 441, 484, 529, 576, 625, 676, 243, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 432, 1369, 1444, 1521, 64, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 343, 500
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2004

Keywords

Crossrefs

Cf. A093836 (numerators), A093832, A000328.

Extensions

Definition edited (based on A093836) by Eric M. Schmidt, May 28 2015

A255238 Triangle T(n, m) of numbers of points of a square lattice covered by a circular disk of radius n (centered at any lattice point taken as origin) with ordinate y = m in the first quadrant.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 3, 1, 5, 4, 4, 3, 1, 6, 5, 5, 5, 4, 1, 7, 6, 6, 6, 5, 4, 1, 8, 7, 7, 7, 6, 5, 4, 1, 9, 8, 8, 8, 7, 7, 6, 4, 1, 10, 9, 9, 9, 9, 8, 7, 6, 5, 1, 11, 10, 10, 10, 10, 9, 9, 8, 7, 5, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 12 2015

Keywords

Comments

This entry is motivated by the proposal A255195 by Mats Granvik.
See the MathWorld link on Gauss's circle problem.
The first quadrant of a square lattice (x, y) with x = n >= 0, y = m >= 0, is considered. The number of lattice points covered by a circular disk of radius R = n around the origin having ordinate value y = m are denoted by T(n, m), for n >= 0 and m = 0, 1, ..., n.
The same numbers occur if x and y are interchanged.
One could also consider the row reversed triangle.
The row sums give R(n) = A000603(n), n >= 0.
The alternating row sums give A255239(n), n >= 0.
The total number of square lattice points covered by a circular disk of radius n is A000328(n) = 4*R(n) - (4*n+3).

Examples

			The triangle T(n, m) begins:
n\m  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
0:   1
1:   2  1
2:   3  2  1
3:   4  3  3  1
4:   5  4  4  3  1
5:   6  5  5  5  4  1
6:   7  6  6  6  5  4  1
7:   8  7  7  7  6  5  4  1
8:   9  8  8  8  7  7  6  4  1
9:  10  9  9  9  9  8  7  6  5  1
10: 11 10 10 10 10  9  9  8  7  5  1
11: 12 11 11 11 11 10 10  9  8  7  5  1
12: 13 12 12 12 12 11 11 10  9  8  7  5  1
13: 14 13 13 13 13 13 12 11 11 10  9  7  6  1
14: 15 14 14 14 14 14 13 13 12 11 10  9  8  6  1
15: 16 15 15 15 15 15 14 14 13 13 12 11 10  8  6  1
...
		

Crossrefs

Formula

T(n, m) = 1 + floor(sqrt(n^2 - m^2)), 0 <= m <= n.
Previous Showing 11-20 of 45 results. Next