cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A218278 Convolution of level 4 of the divisor function.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 4, 7, 9, 21, 20, 36, 35, 66, 52, 101, 84, 147, 120, 224, 160, 285, 220, 394, 281, 483, 360, 680, 455, 750, 560, 1025, 680, 1116, 800, 1512, 969, 1575, 1148, 2088, 1330, 2160, 1540, 2860, 1771, 2838, 2024, 3734, 2286, 3651, 2640, 4816, 2925
Offset: 1

Views

Author

Michel Marcus, Oct 25 2012

Keywords

Comments

Named W4(n) by S. Alaca and K. S. Williams.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(sigma(k)*sigma(n-4*k), k=1..floor(n/4)), n=1..70); # Ridouane Oudra, Nov 23 2022
  • PARI
    a(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/4), sigma(m)*sigma(i-4*m));print1(s , ", "););}
    
  • PARI
    a(n) = {for (i=1, n, v = sigma(i,3)/48 - i*sigma(i)/16 + sigma(i)/24;if (i%4 == 0, v += sigma(i/4,3)/3 - i*sigma(i/4)/4 + sigma(i/4)/24);if (i%2 == 0, v += sigma(i/2,3)/16);print1(v , ", "););}

Formula

a(n) = Sum_{m<4n} sigma(n)*sigma(n-4*m).
a(n) = sigma_3(n)/48 - n*sigma(n)/16 + sigma(n)/24 + sigma_3(n/4)/3 - n*sigma(n/4)/4 + sigma(n/4)/24 + sigma_3(n/2)/16.
a(n) = (1/48)*(sigma_3(n) + 2*sigma(n) - 3*n*sigma(n)) + (1/768)*((1 + (-1)^n))*(173*sigma_3(n) - 21*sigma_3(2*n) + 28*sigma(n) - 12*sigma(2*n) - 168*n*sigma(n) + 72*n*sigma(2*n)). - Ridouane Oudra, Nov 23 2022

A374963 a(n) = Sum_{k=1..n-1} sigma(k)*sigma_3(n-k).

Original entry on oeis.org

0, 1, 12, 59, 200, 526, 1184, 2399, 4368, 7656, 12316, 19586, 29008, 43244, 60272, 85543, 114000, 156163, 200652, 266504, 333968, 432570, 528704, 673706, 806200, 1008644, 1192584, 1467684, 1707328, 2084676, 2390848, 2882487, 3286168, 3913722, 4409584, 5237489
Offset: 1

Views

Author

Chai Wah Wu, Jul 25 2024

Keywords

Comments

Convolution of sigma with sigma_3.
In general, if k>=1, m>=1 and a(n) = Sum_{j=1..n-1} sigma_k(j) * sigma_m(n-j), then Sum_{j=1..n} a(j) ~ Gamma(k+1) * Gamma(m+1) * zeta(k+1) * zeta(m+1) * n^(k+m+2) / Gamma(k+m+3). - Vaclav Kotesovec, Sep 19 2024

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1,k] *DivisorSigma[3,n-k],{k,n-1}],{n,36}] (* James C. McMahon, Aug 11 2024 *)
  • Python
    from sympy import divisor_sigma
    def A374963(n): return sum(divisor_sigma(i)*divisor_sigma(n-i,3) for i in range(1,n))

Formula

Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 64800. - Vaclav Kotesovec, Sep 19 2024

A374978 a(n) = Sum_{i+j+k+l+m=n, i,j,k,l,m >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m).

Original entry on oeis.org

0, 0, 0, 0, 1, 15, 110, 545, 2095, 6713, 18750, 47040, 108185, 231640, 467034, 894605, 1639680, 2891475, 4929660, 8155182, 13135080, 20651875, 31770970, 47923680, 70989801, 103454645, 148464520, 210155730, 293558265, 405325092, 553175000, 747508125, 999747750
Offset: 1

Views

Author

Chai Wah Wu, Jul 26 2024

Keywords

Comments

5-fold convolution of A000203.
Convolution of A000203 and A374977.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 26 2024
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q, Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 5];
    Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jul 11 2025, after Alois P. Heinz *)
  • Python
    from sympy import divisor_sigma
    def A374978(n): return sum(divisor_sigma(j)*sum((5*divisor_sigma(i+1,3)-(5+6*i)*divisor_sigma(i+1))*(5*divisor_sigma(n-j-i-1,3)-(5+6*(n-j-i-2))*divisor_sigma(n-j-i-1)) for i in range(1,n-j-2)) for j in range(1,n))//144

Formula

a(n) = Sum_{i=1..n-1} A000203(i)*A374977(n-i).
a(n) = Sum_{i=1..n-2} A000385(i)*A374951(n-i-1).
Column k=5 of A319083.
Sum_{k=1..n} a(k) ~ Pi^10 * n^10 / 28217548800. - Vaclav Kotesovec, Sep 20 2024

A307306 Self-composition of the sum of divisors function (A000203).

Original entry on oeis.org

1, 6, 26, 101, 366, 1294, 4400, 14706, 48362, 157583, 507714, 1621211, 5138804, 16204008, 50867068, 159004142, 494928072, 1534638702, 4743180908, 14622202326, 44978845086, 138074363360, 422979847404, 1293101281551, 3945553307665, 12018461150832, 36556888102402
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    g[x_] := g[x] = Sum[k x^k/(1 - x^k), {k, 1, 27}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 27}]

Formula

G.f.: g(g(x)), where g(x) = Sum_{k>=1} k*x^k/(1 - x^k) is the g.f. of A000203.

A330088 a(n) = Sum_{k=1..n} binomial(n,k) * sigma(k) * sigma(n - k + 1), where sigma = A000203.

Original entry on oeis.org

1, 9, 43, 155, 511, 1442, 4131, 10323, 28171, 63987, 171667, 369395, 957958, 2047694, 5078963, 10671529, 26542339, 53522031, 132273403, 268623854, 647842889, 1266118858, 3197923083, 6058756355, 14581380971, 29480406552, 68634048862, 131847974143, 323289015466, 611887749996
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2019

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n,k)*DivisorSigma(1,k)*DivisorSigma(1,n-k+1):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Dec 03 2019
    
  • Mathematica
    Table[Sum[Binomial[n, k] DivisorSigma[1, k] DivisorSigma[1, n - k + 1], {k, 1, n}], {n, 1, 30}]
    nmax = 30; CoefficientList[Series[(1/2) D[Sum[DivisorSigma[1, k] x^k/k!, {k, 1, nmax}]^2, x], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = sum(k=1, n, binomial(n,k)*sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Dec 05 2019

Formula

E.g.f.: (1/2) * d/dx (Sum_{k>=1} sigma(k) * x^k / k!)^2.

A338865 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} ( exp(j*x^j/(1 - x^j)) )^u.

Original entry on oeis.org

1, 6, 1, 24, 18, 1, 168, 204, 36, 1, 720, 2280, 780, 60, 1, 8640, 25200, 14400, 2100, 90, 1, 40320, 292320, 252000, 58800, 4620, 126, 1, 604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1, 4717440, 46811520, 76265280, 35743680, 6335280, 474768, 15624, 216, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 13 2020

Keywords

Examples

			exp(Sum_{n>0} u*sigma(n)*x^n) = 1 + u*x + (6*u+u^2)*x^2/2! + (24*u+18*u^2+u^3)*x^3/3! + ... .
Triangle begins:
       1;
       6,       1;
      24,      18,       1;
     168,     204,      36,       1;
     720,    2280,     780,      60,      1;
    8640,   25200,   14400,    2100,     90,    1;
   40320,  292320,  252000,   58800,   4620,  126,   1;
  604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1;
  ...
		

Crossrefs

Column k=1..2 give n! * sigma(n), (n!/2) * A000385(n-1).
Rows sum give A294361.
Cf. A000203 (sigma(n)), A008298, A338864, A338871.

Programs

  • Mathematica
    T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[1, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
  • PARI
    {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(j*x^j/(1-x^j+x*O(x^n)))^u), n), k)}
    
  • PARI
    a(n) = if(n<1, 0, n!*sigma(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))

Formula

E.g.f.: exp(Sum_{n>0} u*sigma(n)*x^n).
T(n; u) = Sum_{k=1..n} T(n,k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} k*sigma(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n,k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} sigma(i_j).

A374979 a(n) = Sum_{i+j+k+l+m+r=n, i,j,k,l,m,r >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m)*sigma(r).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 18, 159, 942, 4281, 16050, 51932, 149532, 391524, 947246, 2143677, 4581204, 9316195, 18138636, 33984912, 61534652, 108055425, 184582014, 307515038, 500798058, 798762453, 1249917936, 1921788036, 2907159804, 4332046200, 6365441400, 9232216725
Offset: 1

Views

Author

Chai Wah Wu, Jul 26 2024

Keywords

Comments

6-fold convolution of A000203.
Convolution of A000203 and A374978.
a(n) = Sum_{i=1..n-1} A000203(i)*A374978(n-i).
a(n) = Sum_{i=1..n-2} A000385(i)*A374977(n-i-1).
a(n) = Sum_{i=1..n-1} A374951(i)*A374951(n-i).
a(n) = Sum_{i+j+k=n-3, i,j,k>=1} A000385(i)*A000385(j)*A000385(k).
Column k=6 of A319083.
In general, if the sequence "a" is a k-fold convolution of A000203, then Sum_{k=1..n} a(k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - Vaclav Kotesovec, Sep 20 2024

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 26 2024
  • Python
    from functools import lru_cache
    from sympy import divisor_sigma
    def A374979(n):
        @lru_cache(maxsize=None)
        def g(x):
            f = factorint(x+1).items()
            return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f)-(5+6*x)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12
        return sum(g(i)*g(j)*g(n-3-i-j) for i in range(1,n-4) for j in range(1,n-i-3))

Formula

Sum_{k=1..n} a(k) ~ Pi^12 * n^12 / 22348298649600. - Vaclav Kotesovec, Sep 20 2024

A341637 a(n) = Sum_{d|n} phi(d) * sigma(d) * sigma(n/d).

Original entry on oeis.org

1, 6, 12, 30, 30, 72, 56, 138, 123, 180, 132, 360, 182, 336, 360, 602, 306, 738, 380, 900, 672, 792, 552, 1656, 795, 1092, 1176, 1680, 870, 2160, 992, 2538, 1584, 1836, 1680, 3690, 1406, 2280, 2184, 4140, 1722, 4032, 1892, 3960, 3690, 3312, 2256, 7224, 2835, 4770, 3672, 5460
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 52}]
    Table[Sum[DivisorSigma[1, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 52}]
    f[p_, e_] := (p^(2*e + 3) - (e + 1)*(p^2 - 1)*p^e - p)/((p - 1)^2*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*sigma(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} sigma(gcd(n,k)) * sigma(n/gcd(n,k)).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(2*e+3) - (e+1)*(p^2-1)*p^e - p)/((p-1)^2*(p+1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/3) * A183699 * A330523 = 0.581007... . (End)

A346193 Convolution of level 5 of the divisor function.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 4, 7, 6, 15, 17, 27, 34, 36, 52, 64, 75, 91, 102, 122, 155, 169, 193, 228, 263, 276, 326, 349, 415, 430, 500, 520, 620, 681, 727, 741, 881, 880, 1090, 1020, 1192, 1178, 1375, 1513, 1590, 1557, 1809, 1756, 2274, 2024, 2323, 2245, 2626, 2865
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[DivisorSigma[1, k] * DivisorSigma[1, n - 5*k], {k, 1, (n - 1)/5}]; Array[a, 100]
    (* or *)
    c[n_] := SeriesCoefficient[q * (QPochhammer[q] * QPochhammer[q^5])^4, {q, 0, n}]; a[n_] := 5 * DivisorSigma[3, n]/312 + If[Divisible[n, 5], 125 * DivisorSigma[3, n/5]/312, 0] - n * DivisorSigma[1, n]/20 - If[Divisible[n, 5], n * DivisorSigma[1, n/5]/4, 0] + DivisorSigma[1, n]/24 + If[Divisible[n, 5], DivisorSigma[1, n/5]/24, 0] - c[n]/130; Array[a, 100]

Formula

a(n) = Sum_{k < n/5} sigma(k) * sigma(n-5*k).
a(n) = 5*sigma_3(n)/312 + 125*sigma_3(n/5)/312 + (1/24 - n/20)*sigma(n) + (1/24 - n/4)*sigma(n/5) - c_5(n)/130, where sigma_3(n/5) = sigma(n/5) = 0 if n is not divisible by 5, and c_5(n) is the coefficient of q^n in the expansion of (eta(q) * eta(q^5))^4 (A030210).

A379635 Triangle read by rows: T(n,k) = A000203(k)*A000203(n-k+1), n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 3, 4, 9, 4, 7, 12, 12, 7, 6, 21, 16, 21, 6, 12, 18, 28, 28, 18, 12, 8, 36, 24, 49, 24, 36, 8, 15, 24, 48, 42, 42, 48, 24, 15, 13, 45, 32, 84, 36, 84, 32, 45, 13, 18, 39, 60, 56, 72, 72, 56, 60, 39, 18, 12, 54, 52, 105, 48, 144, 48, 105, 52, 54, 12, 28, 36, 72, 91, 90, 96, 96, 90, 91, 72, 36, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 14 2025

Keywords

Examples

			Triangle begins:
   1;
   3,   3;
   4,   9,   4;
   7,  12,  12,   7;
   6,  21,  16,  21,   6;
  12,  18,  28,  28,  18,  12;
   8,  36,  24,  49,  24,  36,   8;
  15,  24,  48,  42,  42,  48,  24,  15;
  13,  45,  32,  84,  36,  84,  32,  45,  13;
  18,  39,  60,  56,  72,  72,  56,  60,  39,  18;
  12,  54,  52, 105,  48, 144,  48, 105,  52,  54,  12;
  28,  36,  72,  91,  90,  96,  96,  90,  91,  72,  36,  28;
  14,  84,  48, 126,  78, 180,  64, 180,  78, 126,  48,  84,  14;
  ...
For n = 10 the calculation of the row 10 is as follows:
    k    A000203         T(10,k)
    1       1   *  18   =   18
    2       3   *  13   =   39
    3       4   *  15   =   60
    4       7   *   8   =   56
    5       6   *  12   =   72
    6      12   *   6   =   72
    7       8   *   7   =   56
    8      15   *   4   =   60
    9      13   *   3   =   39
   10      18   *   1   =   18
                 A000203
.
		

Crossrefs

Column 1 and leading diagonal give A000203.
Middle diagonal gives A072861.
Row sums give A000385.
Cf. A221529.

Programs

  • Mathematica
    T[n_,k_]:=DivisorSigma[1,k]*DivisorSigma[1,n-k+1];Table[T[n,k],{n,12},{k,n }]//Flatten (* James C. McMahon, Jan 15 2025 *)
  • PARI
    T(n, k)=sigma(k)*sigma(n-k+1)
Previous Showing 21-30 of 30 results.