A218278
Convolution of level 4 of the divisor function.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 4, 7, 9, 21, 20, 36, 35, 66, 52, 101, 84, 147, 120, 224, 160, 285, 220, 394, 281, 483, 360, 680, 455, 750, 560, 1025, 680, 1116, 800, 1512, 969, 1575, 1148, 2088, 1330, 2160, 1540, 2860, 1771, 2838, 2024, 3734, 2286, 3651, 2640, 4816, 2925
Offset: 1
- S. Alaca and K. S. Williams, Evaluation of the convolution sums ..., Journal of Number Theory, Volume 124, Issue 2, June 2007, Pages 491-510.
- E. Royer, Evaluating convolutions of divisor sums with quasimodular forms, arXiv:math/0510429 [math.NT], 2005-2006; International Journal of Number Theory 3, 2 (2007) p. 231-261.
-
with(numtheory): seq(add(sigma(k)*sigma(n-4*k), k=1..floor(n/4)), n=1..70); # Ridouane Oudra, Nov 23 2022
-
a(n) = {for (i=1, n, s = sum(m=1, floor((i-1)/4), sigma(m)*sigma(i-4*m));print1(s , ", "););}
-
a(n) = {for (i=1, n, v = sigma(i,3)/48 - i*sigma(i)/16 + sigma(i)/24;if (i%4 == 0, v += sigma(i/4,3)/3 - i*sigma(i/4)/4 + sigma(i/4)/24);if (i%2 == 0, v += sigma(i/2,3)/16);print1(v , ", "););}
A374963
a(n) = Sum_{k=1..n-1} sigma(k)*sigma_3(n-k).
Original entry on oeis.org
0, 1, 12, 59, 200, 526, 1184, 2399, 4368, 7656, 12316, 19586, 29008, 43244, 60272, 85543, 114000, 156163, 200652, 266504, 333968, 432570, 528704, 673706, 806200, 1008644, 1192584, 1467684, 1707328, 2084676, 2390848, 2882487, 3286168, 3913722, 4409584, 5237489
Offset: 1
-
Table[Sum[DivisorSigma[1,k] *DivisorSigma[3,n-k],{k,n-1}],{n,36}] (* James C. McMahon, Aug 11 2024 *)
-
from sympy import divisor_sigma
def A374963(n): return sum(divisor_sigma(i)*divisor_sigma(n-i,3) for i in range(1,n))
A374978
a(n) = Sum_{i+j+k+l+m=n, i,j,k,l,m >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m).
Original entry on oeis.org
0, 0, 0, 0, 1, 15, 110, 545, 2095, 6713, 18750, 47040, 108185, 231640, 467034, 894605, 1639680, 2891475, 4929660, 8155182, 13135080, 20651875, 31770970, 47923680, 70989801, 103454645, 148464520, 210155730, 293558265, 405325092, 553175000, 747508125, 999747750
Offset: 1
-
b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 5):
seq(a(n), n=1..55); # Alois P. Heinz, Jul 26 2024
-
b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q, Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
a[n_] := b[n, 5];
Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jul 11 2025, after Alois P. Heinz *)
-
from sympy import divisor_sigma
def A374978(n): return sum(divisor_sigma(j)*sum((5*divisor_sigma(i+1,3)-(5+6*i)*divisor_sigma(i+1))*(5*divisor_sigma(n-j-i-1,3)-(5+6*(n-j-i-2))*divisor_sigma(n-j-i-1)) for i in range(1,n-j-2)) for j in range(1,n))//144
A307306
Self-composition of the sum of divisors function (A000203).
Original entry on oeis.org
1, 6, 26, 101, 366, 1294, 4400, 14706, 48362, 157583, 507714, 1621211, 5138804, 16204008, 50867068, 159004142, 494928072, 1534638702, 4743180908, 14622202326, 44978845086, 138074363360, 422979847404, 1293101281551, 3945553307665, 12018461150832, 36556888102402
Offset: 1
-
g[x_] := g[x] = Sum[k x^k/(1 - x^k), {k, 1, 27}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 27}]
A330088
a(n) = Sum_{k=1..n} binomial(n,k) * sigma(k) * sigma(n - k + 1), where sigma = A000203.
Original entry on oeis.org
1, 9, 43, 155, 511, 1442, 4131, 10323, 28171, 63987, 171667, 369395, 957958, 2047694, 5078963, 10671529, 26542339, 53522031, 132273403, 268623854, 647842889, 1266118858, 3197923083, 6058756355, 14581380971, 29480406552, 68634048862, 131847974143, 323289015466, 611887749996
Offset: 1
-
[&+[Binomial(n,k)*DivisorSigma(1,k)*DivisorSigma(1,n-k+1):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Dec 03 2019
-
Table[Sum[Binomial[n, k] DivisorSigma[1, k] DivisorSigma[1, n - k + 1], {k, 1, n}], {n, 1, 30}]
nmax = 30; CoefficientList[Series[(1/2) D[Sum[DivisorSigma[1, k] x^k/k!, {k, 1, nmax}]^2, x], {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = sum(k=1, n, binomial(n,k)*sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Dec 05 2019
A338865
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} ( exp(j*x^j/(1 - x^j)) )^u.
Original entry on oeis.org
1, 6, 1, 24, 18, 1, 168, 204, 36, 1, 720, 2280, 780, 60, 1, 8640, 25200, 14400, 2100, 90, 1, 40320, 292320, 252000, 58800, 4620, 126, 1, 604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1, 4717440, 46811520, 76265280, 35743680, 6335280, 474768, 15624, 216, 1
Offset: 1
exp(Sum_{n>0} u*sigma(n)*x^n) = 1 + u*x + (6*u+u^2)*x^2/2! + (24*u+18*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
6, 1;
24, 18, 1;
168, 204, 36, 1;
720, 2280, 780, 60, 1;
8640, 25200, 14400, 2100, 90, 1;
40320, 292320, 252000, 58800, 4620, 126, 1;
604800, 3729600, 4334400, 1486800, 183120, 8904, 168, 1;
...
Column k=1..2 give n! * sigma(n), (n!/2) *
A000385(n-1).
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[1, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(j*x^j/(1-x^j+x*O(x^n)))^u), n), k)}
-
a(n) = if(n<1, 0, n!*sigma(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A374979
a(n) = Sum_{i+j+k+l+m+r=n, i,j,k,l,m,r >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m)*sigma(r).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 18, 159, 942, 4281, 16050, 51932, 149532, 391524, 947246, 2143677, 4581204, 9316195, 18138636, 33984912, 61534652, 108055425, 184582014, 307515038, 500798058, 798762453, 1249917936, 1921788036, 2907159804, 4332046200, 6365441400, 9232216725
Offset: 1
-
b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 6):
seq(a(n), n=1..55); # Alois P. Heinz, Jul 26 2024
-
from functools import lru_cache
from sympy import divisor_sigma
def A374979(n):
@lru_cache(maxsize=None)
def g(x):
f = factorint(x+1).items()
return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f)-(5+6*x)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12
return sum(g(i)*g(j)*g(n-3-i-j) for i in range(1,n-4) for j in range(1,n-i-3))
A341637
a(n) = Sum_{d|n} phi(d) * sigma(d) * sigma(n/d).
Original entry on oeis.org
1, 6, 12, 30, 30, 72, 56, 138, 123, 180, 132, 360, 182, 336, 360, 602, 306, 738, 380, 900, 672, 792, 552, 1656, 795, 1092, 1176, 1680, 870, 2160, 992, 2538, 1584, 1836, 1680, 3690, 1406, 2280, 2184, 4140, 1722, 4032, 1892, 3960, 3690, 3312, 2256, 7224, 2835, 4770, 3672, 5460
Offset: 1
-
Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 52}]
Table[Sum[DivisorSigma[1, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 52}]
f[p_, e_] := (p^(2*e + 3) - (e + 1)*(p^2 - 1)*p^e - p)/((p - 1)^2*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 12 2022 *)
-
a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*sigma(n/d)); \\ Michel Marcus, Feb 17 2021
A346193
Convolution of level 5 of the divisor function.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 3, 4, 7, 6, 15, 17, 27, 34, 36, 52, 64, 75, 91, 102, 122, 155, 169, 193, 228, 263, 276, 326, 349, 415, 430, 500, 520, 620, 681, 727, 741, 881, 880, 1090, 1020, 1192, 1178, 1375, 1513, 1590, 1557, 1809, 1756, 2274, 2024, 2323, 2245, 2626, 2865
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Şaban Alaca and Kenneth S. Williams, Evaluation of the convolution sums ..., Journal of Number Theory, Vol. 124, No. 2 (2007) pp. 491-510.
- Mathieu Lemire and Kenneth S. Williams, Evaluation of two convolution sums involving the sum of divisors function, Bulletin of the Australian Mathematical Society, Vol. 73, No. 1 (2006), pp. 107-115.
- Emmanuel Royer, Evaluating convolution sums of the divisor function by quasimodular forms, International Journal of Number Theory, Vol. 3, No. 2 (2007) pp. 231-261.
-
a[n_] := Sum[DivisorSigma[1, k] * DivisorSigma[1, n - 5*k], {k, 1, (n - 1)/5}]; Array[a, 100]
(* or *)
c[n_] := SeriesCoefficient[q * (QPochhammer[q] * QPochhammer[q^5])^4, {q, 0, n}]; a[n_] := 5 * DivisorSigma[3, n]/312 + If[Divisible[n, 5], 125 * DivisorSigma[3, n/5]/312, 0] - n * DivisorSigma[1, n]/20 - If[Divisible[n, 5], n * DivisorSigma[1, n/5]/4, 0] + DivisorSigma[1, n]/24 + If[Divisible[n, 5], DivisorSigma[1, n/5]/24, 0] - c[n]/130; Array[a, 100]
A379635
Triangle read by rows: T(n,k) = A000203(k)*A000203(n-k+1), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 3, 4, 9, 4, 7, 12, 12, 7, 6, 21, 16, 21, 6, 12, 18, 28, 28, 18, 12, 8, 36, 24, 49, 24, 36, 8, 15, 24, 48, 42, 42, 48, 24, 15, 13, 45, 32, 84, 36, 84, 32, 45, 13, 18, 39, 60, 56, 72, 72, 56, 60, 39, 18, 12, 54, 52, 105, 48, 144, 48, 105, 52, 54, 12, 28, 36, 72, 91, 90, 96, 96, 90, 91, 72, 36, 28
Offset: 1
Triangle begins:
1;
3, 3;
4, 9, 4;
7, 12, 12, 7;
6, 21, 16, 21, 6;
12, 18, 28, 28, 18, 12;
8, 36, 24, 49, 24, 36, 8;
15, 24, 48, 42, 42, 48, 24, 15;
13, 45, 32, 84, 36, 84, 32, 45, 13;
18, 39, 60, 56, 72, 72, 56, 60, 39, 18;
12, 54, 52, 105, 48, 144, 48, 105, 52, 54, 12;
28, 36, 72, 91, 90, 96, 96, 90, 91, 72, 36, 28;
14, 84, 48, 126, 78, 180, 64, 180, 78, 126, 48, 84, 14;
...
For n = 10 the calculation of the row 10 is as follows:
k A000203 T(10,k)
1 1 * 18 = 18
2 3 * 13 = 39
3 4 * 15 = 60
4 7 * 8 = 56
5 6 * 12 = 72
6 12 * 6 = 72
7 8 * 7 = 56
8 15 * 4 = 60
9 13 * 3 = 39
10 18 * 1 = 18
A000203
.
Column 1 and leading diagonal give
A000203.
-
T[n_,k_]:=DivisorSigma[1,k]*DivisorSigma[1,n-k+1];Table[T[n,k],{n,12},{k,n }]//Flatten (* James C. McMahon, Jan 15 2025 *)
-
T(n, k)=sigma(k)*sigma(n-k+1)
Comments