cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A173294 Values of 16*n^2+24*n+7, n>=0, each duplicated.

Original entry on oeis.org

7, 7, 47, 47, 119, 119, 223, 223, 359, 359, 527, 527, 727, 727, 959, 959, 1223, 1223, 1519, 1519, 1847, 1847, 2207, 2207, 2599, 2599, 3023, 3023, 3479, 3479, 3967, 3967, 4487, 4487, 5039, 5039, 5623, 5623, 6239, 6239, 6887, 6887, 7567, 7567, 8279, 8279, 9023, 9023, 9799, 9799, 10607, 10607, 11447, 11447, 12319, 12319, 13223, 13223, 14159, 14159, 15127, 15127, 16127
Offset: 0

Views

Author

Paul Curtz, Feb 15 2010

Keywords

Comments

The Leibniz series for Pi/4 involves 1, -1/3, 1/5, -1/7, 1/9, -1/11, .. inverses of the odd numbers. The first differences of this sequence of fractions are -4/3, 8/15, -12/35, 16/63, -20/99, 24/143,... = (-1)^(n+1)*A008586(n+1)/A000466(n+1).
a(n) is the difference of the n-th denominator and numerator, A000466(n+1)+(-1)^n*A008586(n+1). (Note that A000466 is a bisection of A005563, which establishes a very distant relation between this sequence and the Lyman series.)
If one would add the n-th denominator and numerator, -1, 23, 23, 79, 79, 167, 167, 287, 287, 439,...(duplicated values of 16n^2+40n+23 and a -1) would result.

Programs

  • Mathematica
    With[{c=16n^2+24n+7},Table[{c,c},{n,0,40}]]//Flatten (* or *) LinearRecurrence[ {1,2,-2,-1,1},{7,7,47,47,119},80] (* Harvey P. Dale, Jan 16 2019 *)

Formula

a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G..f: ( -7-26*x^2+x^4 ) / ( (1+x)^2*(x-1)^3 ).
a(2n) = a(2n+1) = 16n^2+24n+7.

A191567 Four interlaced 2nd order polynomials: a(4*k) = k*(1+2*k); a(1+2*k) = 2*(1+2*k)*(3+2*k); a(2+4*k) = 4*(1+k)*(1+2*k).

Original entry on oeis.org

0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286, 21, 390, 112, 510, 36, 646, 180, 798, 55, 966, 264, 1150, 78, 1350, 364, 1566, 105, 1798, 480, 2046, 136, 2310, 612, 2590, 171, 2886, 760, 3198, 210, 3526, 924, 3870, 253, 4230, 1104, 4606, 300, 4998, 1300, 5406, 351
Offset: 0

Views

Author

Paul Curtz, Jun 12 2011

Keywords

Comments

a(n) = T(0,n) and differences T(n,k) = T(n-1,k+1) - T(n-1,k) define the array
0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286, 21, 390, ..
6, -2, 26, -27, 67, -46, 102, -116, 188, -138, 226, -265, 369, -278, ..
-8, 28 -53, 94, -113, 148, -218, 304, -326, 364, -491, 634, -647, 676, ...
T(3,n) mod 9 is the sequence 1, 1, 1, 4, 4, 4, 7, 7, 7, 4, 4, 4 (and periodically repeated with period 12).
A064680(2+n) divides a(n), where b(n) = a(n)/A064680(2+n) = 0, 1, 2, 3, 1, 5, 6, 7, 2,... for n>=0, obeys b(4*k) = k and has recurrence b(n) = 2*b(n-4) - b(n-8).

Crossrefs

Programs

  • GAP
    a:=[0,6,4,30,3,70,24,126,10,198,60,286];; for n in [13..60] do a[n]:= 3*a[n-4]-3*a[n-8]+a[n-12]; od; a; # G. C. Greubel, Feb 26 2019
  • Magma
    I:=[0,6,4,30,3,70,24,126,10,198,60,286]; [n le 12 select I[n] else 3*Self(n-4)-3*Self(n-8)+Self(n-12): n in [1..60]]; // Vincenzo Librandi, Apr 23 2017
    
  • Mathematica
    Table[Which[OddQ@ n, 2 (1 + 2 #) (3 + 2 #) &[(n - 1)/2], Mod[n, 4] == 0, # (1 + 2 #) &[n/4], True, 4 (1 + #) (1 + 2 #) &[(n - 2)/4]], {n, 0, 60}] (* or *)
    CoefficientList[Series[x(6 +4x +30x^2 +3x^3 +52x^4 +12x^5 +36x^6 +x^7 +6x^8 -2x^10)/((1-x)^3*(1+x)^3*(1+x^2)^3), {x, 0, 60}], x] (* Michael De Vlieger, Apr 22 2017 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1}, {0,6,4,30,3,70,24,126,10,198,60, 286}, 80] (* Vincenzo Librandi, Apr 23 2017 *)
  • PARI
    m=60; v=concat([0,6,4,30,3,70,24,126,10,198,60,286], vector(m-12)); for(n=13, m, v[n]=3*v[n-4]-3*v[n-8]+v[n-12]); v \\ G. C. Greubel, Feb 26 2019
    
  • Sage
    (x*(6+4*x+30*x^2+3*x^3+52*x^4+12*x^5+36*x^6+x^7+6*x^8-2*x^10)/((1-x)^3 *(1+x)^3*(1+x^2)^3 )).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
    

Formula

a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) = A061037(n+2) + A181318(n). - Paul Curtz, Jul 19 2011
a(n) = A060819(n) * A145979(n). - Paul Curtz, Sep 06 2011
G.f.: x*(6+4*x+30*x^2+3*x^3+52*x^4+12*x^5+36*x^6+x^7+6*x^8-2*x^10) /( (1-x)^3 *(1+x)^3 *(1+x^2)^3 ). - R. J. Mathar, Jun 17 2011
Let BEB(n) = a(n)/A061038(n+2) = A060819(n)/A145979(n). Then (BEB(n))^2 = A181318(n)/A061038(n+2) = BEB(n) - A061037(n+2)/A061038(n+2). - Paul Curtz, Jul 19 2011, index corrected by R. J. Mathar, Sep 09 2011
From Luce ETIENNE, Apr 18 2017: (Start)
a(n) = n*(n + 2)*(37 - 27*(-1)^n - 3*((-1)^((2*n + 1 - (-1)^n)/4) + (-1)^((2*n - 1 + (-1)^n)/4)))/32.
a(n) = n*(n+2)*(37-27*cos(n*Pi) - 6*cos(n*Pi/2))/32.
a(n) = n*(n + 2)*(37 - 27*(-1)^n - 3*(i^n + (-i)^n))/32, where i=sqrt(-1). (End)

A208853 Array of hypotenuses of primitive Pythagorean triangles when read by SW-NE diagonals.

Original entry on oeis.org

5, 13, 17, 29, 25, 37, 53, 41, 0, 65, 85, 65, 61, 73, 101, 125, 97, 85, 89, 109, 145, 173, 137, 0, 113, 0, 0, 197, 229, 185, 157, 145, 149, 169, 205, 257, 293, 241, 205, 185, 181, 193, 221, 265, 325, 365, 305, 0, 233, 221, 0
Offset: 1

Views

Author

Wolfdieter Lang, Mar 05 2012

Keywords

Comments

All primitive Pythagorean triples (see the links) (a,b,c), with a odd, b even, hence c odd, are given by c=u^2 + v^2, with u odd, u=2*n+1, n>=1, v even, v=2*m, m>=1, and gcd(u,v)=1. The present array is c=c(n,m) = (2*n-1)^2 + (2*m)^2, if gcd(2*n-1,2*m)=1 and 0 otherwise. The corresponding triangle, read by SW-NE diagonals, is T(n,m):= c(n-m+1,m). The 0 entries indicate that there are only non-primitive triples for these n,m values. See the example section for the scaling factor g=gcd(u,v)^2 for such non-primitive triangles.
For the increasingly ordered c-values see A008846 (with multiplicity see A020882).
All primitive Pythagorean triples are given by
(a(n,m)=A208854(n,m), b(n,m)=A208855(n,m), c(n,m)), n>=1, m>=1. If this is (0,0,0) then no primitive triple exists for these n,m values. See the example section.
In the prime factorization of c(n,m) (which is odd) all prime factors are of the type 4*k+1 (see A002144). See the Niven-Zuckerman-Montgomery reference, Theorem 3.20, p. 164. For the general representation of positive integers as the sum of two squares see Theorem 2.15 by Fermat, p. 55. E.g.: c(5,2) = 85 = 5*17. c = 5*7^2 = 245 has a non-primitive solution 7^2*(1^2 + 2^2) = 7^2*c(1,1), therefore c(4,7)=0 in this array.
The triples with an even cathetus (b) and the hypotenuse (c) differing by 1 unit are (2*k+1, 4*T(k), 4*T(k)+1), k >= 1, with the triangular numbers A000217. The c values are given in A001844. E.g., (n,m)=(1,1), k=1. (3,4,5); (n,m)=(2,1), k=2, (5,12,13); (n,m)=(2,2), k=3, (7,24,25). See the example section for the table.
The triples with an odd cathetus (a) and the hypotenuse differing by 2 units are (4*k^2-1, 4*k, 4*k^2+1), k >= 1. These triples are given in (A000466(k), A008586(k), A053755(k)). E.g., (n,m)=(1,4), k=4, (63,16,65).
The triples with the catheti differing by one length unit are generated by a substitution rule for the (u,v) values starting with (1,1). See a Wolfdieter Lang comment on A001653 for this rule. - Wolfdieter Lang, Mar 08 2012

Examples

			Triangle T(n,m):
......m|  1     2     3     4    5    6     7     8    9    10 ...
......v|  2     4     6     8   10   12    14    16   18    20 ...
n,  u
1,  1     5
2,  3    13    17
3,  5    29    25    37
4,  7    53    41     0    65
5,  9    85    65    61    73  101
6, 11   125    97    85    89  109  145
7, 13   173   137     0   113    0    0   197
8, 15   229   185   157   145  149  169   205   257
9, 17   293   241   205   185  181  193   221   265  325
10,19   365   305     0   233  221    0     0   281    0   401
...
Array c(n,m):
......m|  1    2    3     4     5    6     7     8    9    10 ...
......v|  2    4    6     8    10   12    14    16   18    20 ...
n,  u
1,  1     5   17   37    65   101  145   197   257  325   401
2   3    13   25    0    73   109    0   205   265    0   409
3,  5    29   41   61    89     0  169   221   281  349     0
4,  7    53   65   85   113   149  193     0   305  373   449
5,  9    85   97    0   145   181    0   277   337    0   481
6, 11   125  137  157   185   221  265   317   377  445   521
7, 13   173  185  205   233   269  313   365   425  493   569
8, 15   229  241    0   289     0    0   421   481    0     0
9, 17   293  305  325   353   389  433   485   545  613   689
10,19   365  377  397   425   461  505   557   617  685   761
...
------------------------------------------------------------------
Array of triples (a(n,m)=A208854,b(n,m)=A208855,c(n,m)):
......m|    1           2               3             4  ...
......v|    2           4               6             8  ...
n,  u
1,  1    (3,4,5)     (15,8,17)      (35,12,37)     (63,16,65)
2,  3    (5,12,13)   (7,24,25)       (0,0,0)       (55,48,73)
3,  5   (21,20,29)   (9,40,41)      (11,60,61)     (39,80,89)
4,  7   (45,28,53)   (33,56,65)     (13,84,85)    (15,112,113)
5,  9   (77,36,85)   (65,72,97)      (0,0,0)      (17,144,145)
6, 11  (117,44,125) (105,88,137)   (85,132,157)   (57,176,185)
7, 13  (165,52,173) (153,104,185)  (133,156,205) (105,208,233)
8, 15  (221,60,229) (209,120,241)    (0,0,0)     (161,240,289)
9, 17  (285,68,293) (273,136,305)  (253,204,325) (225,272,353)
10,19  (357,76,365) (345,152,377)  (325,228,397) (297,304,425)
...
Array continued:
Array of triples (a(n,m)=A208854,b(n,m)=A208855,c(n,m)):
......m|     5            6               7           8  ...
......v|    10           12              14          16  ...
n,  u
1,  1   (99,20,101)  (143,24,145)  (195,28,197)  (255,32,257)
2   3   (91,60,109)     (0,0,0)    (187,84,205)  (247,96,265)
3,  5    (0,0,0)     (119,120,169) (171,140,221) (231,160,281)
4,  7  (51,140,149)  (95,168,193)     (0,0,0)    (207,224,305)
5,  9  (19,180,181)     (0,0,0)    (115,252,277) (175,288,337)
6, 11  (21,220,221)  (23,264,265)  (75,308,317)  (135,352,377)
7, 13  (69,260,269)  (25,312,313)  (27,364,365)  (87,416,425)
8, 15     (0,0,0)       (0,0,0)    (29,420,421)  (31,480,481)
9, 17  (189,340,389) (145,408,433) (93,476,485)  (33,544,545)
10,19  (261,380,461) (217,456,505) (165,532,557) (105,608,617)
...
(0,0,0) indicates that no primitive Pythagorean triangle exists for these (n,m) values. The corresponding scaled triples would be (a,b,c) = g*(a/g,b/g,c/g), with g=gcd(u,v)^2 for such non-primitive triangles. E.g., c(n,m) = c(5,3) = 0, (u,v) = (9,6), g = 3^2, (45,108,117) = 3^2*(45/9,108/9,117/9) = 9*(5,12,13). The scaling factor for the primitive triangle (5,12,13), tabulated for c(n,m)=(2,1), is here 9.
		

References

  • I. Niven, H. S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of Numbers, 5th edition, Wiley & Sons, New York, 1991

Crossrefs

Formula

T(n,m) = c(n-m+1,m), n >= m >= 1, with c(n,m) := (2*n-1)^2 + (2*m)^2, if gcd(2*n-1, 2*m) = 1 and 0 otherwise.

A282284 Least common multiple of 3*n+1 and 3*n-1.

Original entry on oeis.org

1, 4, 35, 40, 143, 112, 323, 220, 575, 364, 899, 544, 1295, 760, 1763, 1012, 2303, 1300, 2915, 1624, 3599, 1984, 4355, 2380, 5183, 2812, 6083, 3280, 7055, 3784, 8099, 4324, 9215, 4900, 10403, 5512, 11663, 6160, 12995, 6844, 14399, 7564, 15875, 8320, 17423
Offset: 0

Views

Author

Colin Barker, Feb 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM@@{3n+1,3n-1},{n,0,50}] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{1,4,35,40,143,112,323},60] (* Harvey P. Dale, Sep 05 2020 *)
  • PARI
    vector(60, n, n--; lcm(3*n+1, 3*n-1))
    
  • PARI
    Vec((1+4*x+32*x^2+28*x^3+41*x^4+4*x^5-2*x^6) / ((1-x)^3*(1+x)^3) + O(x^60))

Formula

a(n) = 9*n^2-1 for n>0 and even.
a(n) = (9*n^2-1)/2 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
G.f.: (1+4*x+32*x^2+28*x^3+41*x^4+4*x^5-2*x^6) / ((1-x)^3*(1+x)^3).

A282285 Least common multiple of 5*n+1 and 5*n-1.

Original entry on oeis.org

1, 12, 99, 112, 399, 312, 899, 612, 1599, 1012, 2499, 1512, 3599, 2112, 4899, 2812, 6399, 3612, 8099, 4512, 9999, 5512, 12099, 6612, 14399, 7812, 16899, 9112, 19599, 10512, 22499, 12012, 25599, 13612, 28899, 15312, 32399, 17112, 36099, 19012, 39999, 21012
Offset: 0

Views

Author

Colin Barker, Feb 11 2017

Keywords

Crossrefs

Programs

  • PARI
    vector(60, n, n--; lcm(5*n+1, 5*n-1))
    
  • PARI
    Vec((1+12*x+96*x^2+76*x^3+105*x^4+12*x^5-2*x^6) / ((1-x)^3*(1+x)^3) + O(x^60))

Formula

a(n) = 25*n^2-1 for n>0 and even.
a(n) = (25*n^2-1)/2 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
G.f.: (1+12*x+96*x^2+76*x^3+105*x^4+12*x^5-2*x^6) / ((1-x)^3*(1+x)^3).

A282286 Least common multiple of 7*n+1 and 7*n-1.

Original entry on oeis.org

1, 24, 195, 220, 783, 612, 1763, 1200, 3135, 1984, 4899, 2964, 7055, 4140, 9603, 5512, 12543, 7080, 15875, 8844, 19599, 10804, 23715, 12960, 28223, 15312, 33123, 17860, 38415, 20604, 44099, 23544, 50175, 26680, 56643, 30012, 63503, 33540, 70755, 37264, 78399
Offset: 0

Views

Author

Colin Barker, Feb 11 2017

Keywords

Crossrefs

Programs

  • PARI
    vector(60, n, n--; lcm(7*n+1, 7*n-1))
    
  • PARI
    Vec((1+24*x+192*x^2+148*x^3+201*x^4+24*x^5-2*x^6) / ((1-x)^3*(1+x)^3) + O(x^60))

Formula

a(n) = 49*n^2-1 for n>0 and even.
a(n) = (49*n^2-1)/2 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
G.f.: (1+24*x+192*x^2+148*x^3+201*x^4+24*x^5-2*x^6) / ((1-x)^3*(1+x)^3).

A128139 Triangle read by rows: matrix product A004736 * A128132.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 7, 5, 1, 6, 9, 10, 9, 6, 1, 7, 11, 13, 13, 11, 7, 1, 8, 13, 16, 17, 16, 13, 8, 1, 9, 15, 19, 21, 21, 19, 15, 9, 1, 10, 17, 22, 25, 26, 25, 22, 17, 10
Offset: 0

Views

Author

Gary W. Adamson, Feb 16 2007

Keywords

Comments

A077028 with the final term in each row omitted.
Interchanging the factors in the matrix product leads to A128140 = A128132 * A004736.
From Gary W. Adamson, Jul 01 2012: (Start)
Alternatively, antidiagonals of an array A(n,k) of sequences with arithmetic progressions as follows:
1, 2, 3, 4, 5, 6, ...
1, 3, 5, 7, 9, 11, ...
1, 4, 7, 10, 13, 16, ...
1, 5, 9, 13, 17, 21, ...
... (End)
From Gary W. Adamson, Jul 02 2012: (Start)
A summation generalization for Sum_{k>=1} 1/(A(n,k)*A(n,k+1)) (formulas copied from A002378, A000466, A085001, A003185):
1 = 1/(1)*(2) + 1/(2)*(3) + 1/(3)*(4) + ...
1 = 2/(1)*(3) + 2/(3)*(5) + 2/(5)*(7) + ...
1 = 3/(1)*(4) + 3/(4)*(7) + 3/(7)*(10) + ...
1 = 4/(1)*(5) + 4/(5)*(9) + 4/(9)*(13) + ...
...
As a summation of terms equating to a definite integral:
Integral_{0..1} dx/(1+x) = ... 1 - 1/2 + 1/3 - 1/4 + ... = log(2).
Integral_{0..1} dx/(1+x^2) = 1 - 1/3 + 1/5 - 1/7 + ... = Pi/4 (see A157142)
Integral_{0..1} dx/(1+x^3) = 1 - 1/4 + 1/7 - 1/10 + ... (see A016777)
Integral_{0..1} dx/(1+x^4) = 1 - 1/5 + 1/9 - 1/13 + ... (see A016813). (End)

Examples

			First few rows of the triangle:
  1;
  1,  2;
  1,  3,  3;
  1,  4,  5,  4;
  1,  5,  7,  7,  5;
  1,  6,  9, 10,  9,  6;
  1,  7, 11, 13, 13, 11,  7;
  1,  8, 13, 16, 17, 16, 13,  8;
  1,  9, 15, 19, 21, 21, 19, 15,  9;
  1, 10, 17, 22, 25, 26, 25, 22, 17, 10;
  ...
		

Crossrefs

Cf. A004736, A128132, A128140, A004006 (row sums).

Formula

A004736 * A128132 as infinite lower triangular matrices.
T(n,k) = k*(1+n-k)+1 = 1 + A094053(n+1,1+n-k). - R. J. Mathar, Jul 09 2012

A157913 a(n) = 64*n^2 - 16.

Original entry on oeis.org

48, 240, 560, 1008, 1584, 2288, 3120, 4080, 5168, 6384, 7728, 9200, 10800, 12528, 14384, 16368, 18480, 20720, 23088, 25584, 28208, 30960, 33840, 36848, 39984, 43248, 46640, 50160, 53808, 57584, 61488, 65520, 69680, 73968, 78384, 82928, 87600, 92400, 97328, 102384
Offset: 1

Views

Author

Vincenzo Librandi, Mar 09 2009

Keywords

Comments

The identity (8*n^2 - 1)^2 - (64*n^2 - 16)*n^2 = 1 can be written as A157914(n)^2 - a(n)*n^2 = 1. - Vincenzo Librandi, Feb 09 2012

Crossrefs

Programs

  • Magma
    I:=[48, 240, 560]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 09 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {48, 240, 560}, 50] (* Vincenzo Librandi, Feb 09 2012 *)
    64*Range[40]^2-16 (* Harvey P. Dale, Jul 27 2012 *)
  • PARI
    for(n=1, 40, print1(64*n^2 - 16", ")); \\ Vincenzo Librandi, Feb 09 2012

Formula

From Vincenzo Librandi, Feb 09 2012: (Start)
G.f.: -16*x*(3 + 6*x - x^2)/(x - 1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/32.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi-2)/64. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 16*(exp(x)*(4*x^2 + 4*x - 1) + 1).
a(n) = 16*A000466(n). (End)

A173039 Odd numerators of the fractions (1/4-1/n^2), n>= -2.

Original entry on oeis.org

-3, -1, -3, 5, 3, 21, 45, 15, 77, 117, 35, 165, 221, 63, 285, 357, 99, 437, 525, 143, 621, 725, 195, 837, 957, 255, 1085, 1221, 323, 1365, 1517, 399, 1677, 1845, 483, 2021, 2205, 575, 2397, 2597, 675
Offset: 1

Views

Author

Paul Curtz, Nov 21 2010

Keywords

Comments

Odd numbers in A061037, which is extended to negative n, and uses -1 to represent -1/0 at n=0. Trisections are apparently A003185, A000466 and A085027.

Formula

Conjecture: a(n)= +3*a(n-3) -3*a(n-6) +a(n-9). G.f.: ( 3+x+3*x^2-14*x^3-6*x^4-30*x^5-21*x^6-3*x^7-5*x^8 ) / ( (x-1)^3*(1+x+x^2)^3 ). - R. J. Mathar, Dec 02 2010

A173200 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0,1,2, ... (solutions x are given by A053755).

Original entry on oeis.org

0, 11, 70, 225, 524, 1015, 1746, 2765, 4120, 5859, 8030, 10681, 13860, 17615, 21994, 27045, 32816, 39355, 46710, 54929, 64060, 74151, 85250, 97405, 110664, 125075, 140686, 157545, 175700, 195199, 216090, 238421, 262240, 287595, 314534, 343105
Offset: 1

Views

Author

Michel Lagneau, Feb 12 2010

Keywords

Comments

For many values of k for the equation y^2 = x^3 + k, all the solutions are known. For example, we have solutions for k=-2: (x,y) = (3,-5) and (3,5). A complete resolution for all integers k is unknown. Theorem: Let k be < -1, free of square factors, with k == 2 or 3 (mod 4). Suppose that the number of classes h(Q(sqrt(k))) is not divisible by 3. Then the equation y^2 = x^3 + k admits integer solutions if and only if k = 1 - 3a^2 or 1 - 3a^2 where a is an integer. In this case, the solutions are x = a^2 - k, y = a(a^2 + 3k) or -a(a^2 + 3k) (the first reference gives the proof of this theorem). With k = -1 - 3a^2, we obtain the solutions x = 4a^2 + 1, y = a(8a^2 + 3) or -a(8a^2 + 3). For the case k = 1 - 3a^2, we obtain the solution x = 4a^2 - 1 given by the sequence A000466.

Examples

			With a=3, x =37 and y = 225, and then 225^2 = 37^2 - 28.
		

References

  • T. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
  • D. Duverney, Théorie des nombres (2e edition), Dunod, 2007, p. 151.

Crossrefs

Cf. A000466.

Programs

  • Magma
    I:=[0, 11, 70, 225]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
    
  • Maple
    for a from 0 to 150 do : z := evalf(a*(8*a^2 + 3)) : print (z) :od :
  • Mathematica
    CoefficientList[Series[x*(11+26*x+11*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,11,70,225},40] (* Harvey P. Dale, Dec 21 2016 *)
  • Python
    for n in range(1,20): print(8*n**3 - 24*n**2 + 27*n - 11, end=', ') # Stefano Spezia, Dec 05 2018

Formula

y = a*(8*a^2 + 3).
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 27*n - 11.
G.f.: x^2*(11 + 26*x + 11*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: 11 + exp(x)*(-11 + 11*x + 8*x^3). - Elmo R. Oliveira, Aug 15 2025
Previous Showing 31-40 of 58 results. Next