cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 79 results. Next

A339842 Heinz numbers of non-graphical, multigraphical integer partitions of even numbers.

Original entry on oeis.org

9, 25, 30, 49, 63, 70, 75, 84, 100, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 250, 264, 273, 280, 286, 289, 325, 343, 351, 361, 363, 364, 385, 390, 441, 442, 462, 468, 484, 490, 495, 507, 520, 525, 529, 550, 561, 588, 594, 595, 616, 624, 637, 646
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2020

Keywords

Comments

An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph, and multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}        189: {2,2,2,4}      363: {2,5,5}
     25: {3,3}        196: {1,1,4,4}      364: {1,1,4,6}
     30: {1,2,3}      198: {1,2,2,5}      385: {3,4,5}
     49: {4,4}        210: {1,2,3,4}      390: {1,2,3,6}
     63: {2,2,4}      220: {1,1,3,5}      441: {2,2,4,4}
     70: {1,3,4}      250: {1,3,3,3}      442: {1,6,7}
     75: {2,3,3}      264: {1,1,1,2,5}    462: {1,2,4,5}
     84: {1,1,2,4}    273: {2,4,6}        468: {1,1,2,2,6}
    100: {1,1,3,3}    280: {1,1,1,3,4}    484: {1,1,5,5}
    121: {5,5}        286: {1,5,6}        490: {1,3,4,4}
    147: {2,4,4}      289: {7,7}          495: {2,2,3,5}
    154: {1,4,5}      325: {3,3,6}        507: {2,6,6}
    165: {2,3,5}      343: {4,4,4}        520: {1,1,1,3,6}
    169: {6,6}        351: {2,2,2,6}      525: {2,3,3,4}
    175: {3,3,4}      361: {8,8}          529: {9,9}
For example, a complete list of all multigraphs with degrees (4,2,2,2) is:
  {{1,2},{1,2},{1,3},{1,4},{3,4}}
  {{1,2},{1,3},{1,3},{1,4},{2,4}}
  {{1,2},{1,3},{1,4},{1,4},{2,3}}
Since none of these is strict, i.e., a graph, the Heinz number 189 is in the sequence.
		

Crossrefs

See link for additional cross references.
Distinct prime shadows (images under A181819) of A340017.
A000070 counts non-multigraphical partitions (A339620).
A000569 counts graphical partitions (A320922).
A027187 counts partitions of even length (A028260).
A058696 counts partitions of even numbers (A300061).
A096373 cannot be partitioned into strict pairs.
A209816 counts multigraphical partitions (A320924).
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A320893 can be partitioned into distinct pairs but not into strict pairs.
A339560 can be partitioned into distinct strict pairs.
A339617 counts non-graphical partitions of 2n (A339618).
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&& Select[strr[Times@@Prime/@nrmptn[#]],UnsameQ@@#&]=={}&&strr[Times@@Prime/@nrmptn[#]]!={}&]

Formula

Equals A320924 /\ A339618.
Equals A320924 \ A320922.

A007721 Number of distinct degree sequences among all connected graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 6, 19, 68, 236, 863, 3137, 11636, 43306, 162728, 614142, 2330454, 8875656, 33924699, 130038017, 499753560, 1924912505, 7429159770, 28723877046, 111236422377, 431403469046, 1675316533812, 6513837677642, 25354842098354, 98794053266471, 385312558567775
Offset: 1

Views

Author

Keywords

Comments

Sometimes called "graphical partitions", although this term is deprecated.

Crossrefs

Cf. A000569, A004250, A004251, A007722, A029889; A095268 (analog for all graphs).

Extensions

a(9) corrected by Gordon Royle, Aug 30 2006
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
Prepended missing term a(1), Travis Hoppe, Aug 04 2014
a(22)-a(28) added by Wang Kai, Feb 15 2017

A207864 Number of n X 2 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 4, 34, 500, 10900, 322768, 12297768, 580849872, 33093252880, 2227152575552, 174131286983712, 15604440074084672, 1584856558077903168, 180712593036822482176, 22946861101272125055616, 3222156375409363475703040
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

From Gus Wiseman, Mar 01 2019: (Start)
Also the number of stable partitions of the n-ladder graph. A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The n-ladder has 2n vertices and looks like:
o-o-o- -o
| | | ... |
o-o-o- -o
(End)

Examples

			Some solutions for n=5:
  0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1
  1 0   1 0   1 2   1 2   1 0   1 0   1 2   1 0   1 0   1 0
  0 1   0 1   0 1   0 1   2 1   0 1   0 1   0 2   2 1   0 1
  1 2   1 0   1 0   1 3   3 0   2 0   3 2   2 1   1 0   1 2
  0 1   0 1   2 1   2 4   1 2   0 1   0 1   0 2   0 1   2 0
		

Crossrefs

Programs

  • Mathematica
    Table[Expand[x*(x-1)*(x^2-3*x+3)^(n-1)]/.x^k_.->BellB[k],{n,20}] (* Gus Wiseman, Mar 01 2019 *)

Formula

It appears that the sequence terms are given by the Dobinski-type formula a(n+1) = (1/e) * Sum_{k>=0} (1+k+k^2)^n/k!. - Peter Bala, Mar 12 2012
Apply x^n -> B(n) to the polynomial chi(n) = x (x - 1) (x^2 - 3 x + 3)^(n - 1), where B = A000110. - Gus Wiseman, Mar 01 2019

A321981 Row n gives the chromatic symmetric function of the n-girder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

1, 2, 0, 6, 0, 0, 16, 0, 2, 0, 0, 40, 12, 2, 0, 0, 0, 0, 96, 16, 44, 6, 0, 0, 0, 0, 0, 0, 0, 224, 136, 66, 52, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 512, 384, 208, 96, 30, 178, 0, 18, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1152, 1024, 584, 522, 138, 588, 102
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-girder has n vertices and looks like:
2-4-6- -n
|\|\|\ ... \|
1-3-5- n-1
Conjecture: All terms are nonnegative (verified up to n = 10). This is a special case of Stanley and Stembridge's poset-chain conjecture.

Examples

			Triangle begins:
    1
    2   0
    6   0   0
   16   0   2   0   0
   40  12   2   0   0   0   0
   96  16  44   6   0   0   0   0   0   0   0
  224 136  66  52   2   4   0   2   0   0   0   0   0   0   0
For example, row 6 gives: X_G6 = 96e(6) + 6e(33) + 16e(42) + 44e(51).
		

Crossrefs

A321994 Number of different chromatic symmetric functions of hypertrees on n vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 59, 165
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
Stanley conjectured that the number of distinct chromatic symmetric functions of trees with n vertices is equal to A000055, i.e., the chromatic symmetric function distinguishes between trees. It has been proven for trees with up to 25 vertices. If it is true in general, does the chromatic symmetric function also distinguish between hypertrees, meaning this sequence would be equal to A035053?

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    density[c_]:=Total[(Length[#]-1&)/@c]-Length[Union@@c];
    hyall[n_]:=Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Or[SubsetQ[#1,#2],Length[Intersection[#1,#2]]>1]&],And[Union@@#==Range[n],Length[csm[#]]==1,density[#]==-1]&];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    Table[Length[Union[chromSF/@If[n==1,{{{1}}},hyall[n]]]],{n,5}]

A029894 Number of directed (or Gale-Ryser) graphical partitions: degree-vector pairs (in-degree, out-degree) for directed graphs (loops allowed) with n vertices; or possible ordered pair (row-sum, column-sum) vectors for a 0-1 matrix.

Original entry on oeis.org

1, 2, 7, 34, 221, 1736, 15584, 153228, 1611189, 17826202, 205282376, 2441437708, 29816628471, 372314544202, 4737438631001, 61264426341926, 803488037899349, 10668478221202710, 143203795004873285, 1940953294927992976, 26536578116407809962, 365653739580163294032
Offset: 0

Views

Author

torsten.sillke(AT)lhsystems.com

Keywords

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Main diagonal of A327913.

Programs

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(n) = F(n, n, 0, n) where F(b, c, t, w) = Sum_{i=0..b} Sum_{j=ceiling((t+i)/w)..min(t+i, c)} F(i, j, t+i-j, w-1) for w > 0, F(b, c, 0, 0) = 1 and F(b, c, t, 0) = 0 for t > 0. - Andrew Howroyd, Nov 01 2019

Extensions

"Loops allowed" added to the definition by Brendan McKay, Oct 20 2015
a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Oct 31 2019

A321176 Number of integer partitions of n that are the vertex-degrees of some set system with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 7, 10, 15, 21, 28
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.

Examples

			The a(2) = 1 through a(9) = 15 partitions:
  (11)  (111)  (211)   (221)    (222)     (322)      (2222)      (333)
               (1111)  (2111)   (2211)    (2221)     (3221)      (3222)
                       (11111)  (3111)    (3211)     (3311)      (3321)
                                (21111)   (22111)    (22211)     (4221)
                                (111111)  (31111)    (32111)     (22221)
                                          (211111)   (41111)     (32211)
                                          (1111111)  (221111)    (33111)
                                                     (311111)    (42111)
                                                     (2111111)   (222111)
                                                     (11111111)  (321111)
                                                                 (411111)
                                                                 (2211111)
                                                                 (3111111)
                                                                 (21111111)
                                                                 (111111111)
The a(8) = 10 integer partitions together with a realizing set system for each (the parts of the partition count the appearances of each vertex in the set system):
     (41111): {{1,2},{1,3},{1,4},{1,5}}
      (3311): {{1,2},{1,2,3},{1,2,4}}
      (3221): {{1,2},{1,3},{1,2,3,4}}
     (32111): {{1,2},{1,3},{1,2,4,5}}
    (311111): {{1,2},{1,3},{1,4,5,6}}
      (2222): {{1,2},{3,4},{1,2,3,4}}
     (22211): {{1,2,3},{1,2,3,4,5}}
    (221111): {{1,2},{1,2,3,4,5,6}}
   (2111111): {{1,2},{1,3,4,5,6,7}}
  (11111111): {{1,2,3,4,5,6,7,8}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[n],hyp[#]!={}&]],{n,8}]

A322136 Numbers whose number of prime factors counted with multiplicity exceeds half their sum of prime indices by at least 1.

Original entry on oeis.org

4, 8, 12, 16, 24, 32, 36, 40, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 192, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 432, 448, 480, 512, 576, 640, 648, 672, 704, 720, 768, 800, 832, 864, 896, 960, 972
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence lists all Heinz numbers of integer partitions where the number of parts is at least 1 plus half the sum of parts.
Also Heinz numbers of integer partitions that are the vertex-degrees of some hypertree. We allow no singletons in a hypertree, so 2 is not included.

Examples

			The sequence of partitions with Heinz numbers in the sequence begins: (11), (111), (211), (1111), (2111), (11111), (2211), (3111), (21111), (111111), (22111), (31111), (211111), (22211), (41111), (32111), (1111111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]>=(Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]+2)/2&]

A001130 Number of graphical basis partitions of 2n.

Original entry on oeis.org

1, 1, 3, 4, 6, 11, 16, 23, 36, 52, 71, 103, 141, 197, 272, 366, 482, 657, 863, 1140, 1489, 1951, 2511, 3241, 4155, 5317, 6782, 8574, 10786, 13645, 17111, 21313, 26631, 33020, 41005, 50640, 62373, 76510, 94089, 114991, 140376, 170970, 207837, 251552, 305342, 368474, 444360, 534692, 642593, 770278
Offset: 1

Views

Author

Pranav Kumar Tiwari (pktiwari(AT)eos.ncsu.edu)

Keywords

Comments

A partition of an even integer is graphical if it is the degree sequence of a simple graph.

References

  • Nolan, Jennifer M.; Sivaraman, Vijay; Savage, Carla D.; and Tiwari, Pranav K., Graphical basis partitions, Graphs Combin. 14 (1998), no. 3, 241-261. Math. Rev. 99j:05014. See http://www4.ncsu.edu/~savage/papers.html for postscript file.

Crossrefs

Extensions

Seven more terms (all that are presently known, apparently) added from the Nolan et al. paper by N. J. A. Sloane, Jun 01 2012
Extended b-file from Nolan et al. paper and adjusted description to even n by Ray Chandler, Sep 17 2015

A007722 Number of graphical partitions of biconnected graphs with n nodes.

Original entry on oeis.org

1, 3, 9, 34, 125, 473, 1779, 6732, 25492, 96927, 369463, 1412700, 5415117, 20807502, 80120350, 309106496, 1194609429, 4624160156, 17925278497, 69578272204, 270401326899, 1052036082719, 4097343156323, 15973179953261, 62325892264031, 243392644741599
Offset: 3

Views

Author

Keywords

References

  • F. Ruskey, Alley CATs in search of good homes, Congress. Numerant., 102 (1994) 97-110.

Crossrefs

Extensions

a(15)-a(28) added by Kai Wang, Feb 15 2017
Previous Showing 51-60 of 79 results. Next