cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 86 results. Next

A298118 Number of unlabeled rooted trees with n nodes in which all positive outdegrees are odd.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 40, 80, 159, 322, 657, 1356, 2816, 5896, 12407, 26267, 55861, 119331, 255878, 550665, 1188786, 2574006, 5588177, 12162141, 26529873, 57993624, 127020653, 278716336, 612617523, 1348680531, 2973564157, 6565313455, 14514675376
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2018

Keywords

Examples

			The a(6) = 6 trees: (((((o))))), (((ooo))), ((oo(o))), (oo((o))), (o(o)(o)), (ooooo).
		

Crossrefs

Programs

  • Mathematica
    orut[n_]:=orut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[orut/@c]]]/@Select[IntegerPartitions[n-1],OddQ[Length[#]]&]];
    Table[Length[orut[n]],{n,15}]

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.30984417428419893876754252289588812511559... and c = 0.5598122522173731208680575003383895445787... - Vaclav Kotesovec, Jun 04 2019

Extensions

a(24)-a(35) from Alois P. Heinz, Jan 12 2018

A298426 Regular triangle where T(n,k) is number of k-ary rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 11, 4, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 23, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums are A298422.

Examples

			Triangle begins:
1
0  1
0  1  1
0  1  0  1
0  1  1  0  1
0  1  0  0  0  1
0  1  2  1  0  0  1
0  1  0  0  0  0  0  1
0  1  3  0  1  0  0  0  1
0  1  0  2  0  0  0  0  0  1
0  1  6  0  0  1  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  1
0  1  11 4  2  0  1  0  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  0  0  1
0  1  23 0  0  0  0  1  0  0  0  0  0  0  1
0  1  0  8  0  2  0  0  0  0  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    nn=16;
    arut[n_,k_]:=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[arut[#,k]&/@c]]]/@Select[IntegerPartitions[n-1],Length[#]===k&]]
    Table[arut[n,k]//Length,{n,nn},{k,0,n-1}]

A000628 Number of n-node unrooted steric quartic trees; number of n-carbon alkanes C(n)H(2n+2) taking stereoisomers into account.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 11, 24, 55, 136, 345, 900, 2412, 6563, 18127, 50699, 143255, 408429, 1173770, 3396844, 9892302, 28972080, 85289390, 252260276, 749329719, 2234695030, 6688893605, 20089296554, 60526543480, 182896187256, 554188210352, 1683557607211, 5126819371356, 15647855317080, 47862049187447, 146691564302648, 450451875783866, 1385724615285949
Offset: 0

Views

Author

Keywords

Comments

Trees are unrooted; nodes are unlabeled and have degree <= 4.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A000602 for the analogous sequence when stereoisomers are not counted as different.
Has also been described as steric planted trees (paraffins) with n nodes.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Blair and Henze give recurrence (see the Maple code).
For even n a(n) = A086194(n) + A086200(n/2), for odd n a(n) = A086194(n).

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
More terms from Emeric Deutsch, May 16 2004

A299038 Number A(n,k) of rooted trees with n nodes where each node has at most k children; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 4, 6, 1, 0, 1, 1, 1, 2, 4, 8, 11, 1, 0, 1, 1, 1, 2, 4, 9, 17, 23, 1, 0, 1, 1, 1, 2, 4, 9, 19, 39, 46, 1, 0, 1, 1, 1, 2, 4, 9, 20, 45, 89, 98, 1, 0, 1, 1, 1, 2, 4, 9, 20, 47, 106, 211, 207, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2018

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  1, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0, 1,   2,   2,   2,   2,   2,   2,   2,   2,   2, ...
  0, 1,   3,   4,   4,   4,   4,   4,   4,   4,   4, ...
  0, 1,   6,   8,   9,   9,   9,   9,   9,   9,   9, ...
  0, 1,  11,  17,  19,  20,  20,  20,  20,  20,  20, ...
  0, 1,  23,  39,  45,  47,  48,  48,  48,  48,  48, ...
  0, 1,  46,  89, 106, 112, 114, 115, 115, 115, 115, ...
  0, 1,  98, 211, 260, 277, 283, 285, 286, 286, 286, ...
  0, 1, 207, 507, 643, 693, 710, 716, 718, 719, 719, ...
		

Crossrefs

Main diagonal gives A000081 for n>0.
A(2n,n) gives A299039.
Cf. A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    A:= (n, k)-> `if`(n=0, 1, b(n-1$2, k$2)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
    A[n_, k_] := If[n == 0, 1, b[n - 1, n - 1, k, k]];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)
  • Python
    from sympy import binomial
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, i, t, k): return 1 if n==0 else 0 if i<1 else sum([binomial(b(i-1, i-1, k, k)+j-1, j)*b(n-i*j, i-1, t-j, k) for j in range(min(t, n//i)+1)])
    def A(n, k): return 1 if n==0 else b(n-1, n-1, k, k)
    for d in range(15): print([A(n, d-n) for n in range(d+1)]) # Indranil Ghosh, Mar 02 2018, after Maple code

Formula

A(n,k) = Sum_{i=0..k} A244372(n,i) for n>0, A(0,k) = 1.

A000022 Number of centered hydrocarbons with n atoms.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 2, 6, 9, 20, 37, 86, 181, 422, 943, 2223, 5225, 12613, 30513, 74883, 184484, 458561, 1145406, 2879870, 7274983, 18471060, 47089144, 120528657, 309576725, 797790928, 2062142876, 5345531935, 13893615154, 36201693122
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

References

  • R. G. Busacker and T. L. Saaty, Finite Graphs and Networks, McGraw-Hill, NY, 1965, p. 201. (They reproduce Cayley's mistakes.)
  • A. Cayley, "Über die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen", Chem. Ber. 8 (1875), 1056-1059.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000022 + A000200 = A000602 for n>0. Cf. A010372.

Programs

  • Maple
    # We continue from the Maple code in A000678: Unordered 4-tuples of ternary trees with one of height i and others of height at most i-1:
    N := 45: i := 1: while i<(N+1) do Tb := t[ i ]-t[ i-1 ]: Ts := t[ i ]-1: Q2 := series(Tb*Ts+O(z^(N+1)),z,200): q2[ i ] := Q2: i := i+1; od: q2[ 0 ] := 0: q[ -1 ] := 0:
    for i from 0 to N do c[ i ] := series(q[ i ]-q[ i-1 ]-q2[ i ]+O(z^(N+1)),z,200); od:
    # erase height information: i := 'i': cent := series(sum(c[ i ],i=0..N),z,200); G000022 := cent; A000022 := n->coeff(G000022,z,n);
    # continued in A000200.
  • Mathematica
    n = 40; (* algorithm from Rains and Sloane *)
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S4[T,h-1,z]z - S4[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{0,1}, n+1] (* Robert A. Russell, Sep 15 2018 *)

A000642 a(1)=0; for n>1, a(n) = number of isomeric hydrocarbons of the acetylene series with carbon content n.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925, 251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977, 550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259, 197818389539
Offset: 1

Views

Author

Keywords

Comments

The former definition was "Number of alkyl derivatives of acetylene X^{II} C_n H_{2n+2} with n carbon atoms" with offset 0.
a(n+1) is the number of rooted trees with n nodes and out-degree <= 2 on the root and out-degree <= 3 on all other nodes. See illustration of initial terms. - Washington Bomfim, Nov 28 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 32; B[] = 0; Do[B[x] = 1 + (1/6)*x*(B[x]^3 + 3*B[x]*B[x^2] + 2*B[x^3]) + O[x]^terms // Normal, terms];
    A[x_] = (1/2)*x*(B[x^2] + B[x]^2) + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jun 28 2012, updated Jan 10 2018 *)
  • PARI
    \\ here G(n) is A000598 as g.f.
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    seq(n)={my(g=G(n)); Vec(subst(g,x,x^2) + g^2, -(n+1))/2} \\ Andrew Howroyd, Nov 28 2020

Formula

G.f.: A(x)=(1/2)*x*(B(x^2)+B(x)^2), where B(x) = g.f. for A000598.
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.815460033176... and c = 0.13833565403175156418512996853... - Vaclav Kotesovec, Feb 11 2019

Extensions

I changed the definition and offset so as to agree with Coffman et al. (1933). - N. J. A. Sloane, Jan 13 2019

A292556 Number of rooted unlabeled trees on n nodes where each node has at most 11 children.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12485, 32970, 87802, 235355, 634771, 1720940, 4688041, 12824394, 35216524, 97039824, 268238379, 743596131, 2066801045, 5758552717, 16080588286, 44997928902, 126160000878, 354349643101, 996946927831
Offset: 0

Views

Author

Marko Riedel, Sep 18 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 11$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n-1, n-1, 11, 11]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)

Formula

Functional equation of g.f. is T(z) = z + z*Sum_{q=1..11} Z(S_q)(T(z)) with Z(S_q) the cycle index of the symmetric group.
Alternate FEQ is T(z) = 1 + z*Z(S_11)(T(z)).
a(n) = Sum_{j=1..11} A244372(n,j) for n > 0, a(0) = 1. - Alois P. Heinz, Sep 20 2017
Limit_{n->oo} a(n)/a(n+1) = 0.338324339068091181557475416836618315086769320447748735003402... - Robert A. Russell, Feb 11 2023

A298204 Number of unlabeled rooted trees with n nodes in which all outdegrees are either 0, 1, or 3.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 55, 104, 200, 389, 763, 1507, 3002, 6010, 12102, 24484, 49751, 101475, 207723, 426542, 878451, 1813945, 3754918, 7790326, 16196629, 33739335, 70410401, 147187513, 308171861, 646188276, 1356847388, 2852809425, 6005542176
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2018

Keywords

Examples

			The a(7) = 9 trees: ((((((o)))))), ((((ooo)))), (((oo(o)))), ((oo((o)))), ((o(o)(o))), (oo(((o)))), (oo(ooo)), (o(o)((o))), ((o)(o)(o)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n `if`(n<2, n, add(b(n-1$2, j), j=[1, 3])):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 30 2018
  • Mathematica
    multing[n_,k_]:=Binomial[n+k-1,k];
    a[n_]:=a[n]=If[n===1,1,Sum[Product[multing[a[x],Count[ptn,x]],{x,Union[ptn]}],{ptn,Select[IntegerPartitions[n-1],MemberQ[{1,3},Length[#]]&]}]];
    Table[a[n],{n,40}]
    (* Second program: *)
    b[n_, i_, v_] := b[n, i, v] = If[n == 0,
         If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0,
         If[n == v, 1, Sum[Binomial[a[i] + j - 1, j]*
         b[n - i*j, i - 1, v - j], {j, 0, Min[n/i, v]}]]]];
    a[n_] := If[n < 2, n, Sum[b[n - 1, n - 1, j], {j, {1, 3}}]];
    Array[a, 40] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A292553 Number of rooted unlabeled trees on n nodes where each node has at most 8 children.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 718, 1839, 4757, 12460, 32897, 87592, 234746, 633013, 1715851, 4673320, 12781759, 35093010, 96681705, 267199518, 740580555, 2058042803, 5733101603, 16006590851, 44782679547, 125533577578, 352525803976, 991634575368
Offset: 0

Views

Author

Marko Riedel, Sep 18 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 8$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n - 1, n - 1, 8, 8]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)

Formula

Functional equation of G.f. is T(z) = z + z*Sum_{q=1..8} Z(S_q)(T(z)) with Z(S_q) the cycle index of the symmetric group. Alternate FEQ is T(z) = 1 + z*Z(S_8)(T(z)).
a(n) = Sum_{j=1..8} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 20 2017
a(n) / a(n+1) ~ 0.338386042364849957035744926227166370702775721795018600630554... - Robert A. Russell, Feb 11 2023

A292554 Number of rooted unlabeled trees on n nodes where each node has at most 9 children.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1841, 4763, 12477, 32947, 87735, 235162, 634212, 1719325, 4683368, 12810871, 35177357, 96926335, 267909285, 742641309, 2064029034, 5750500663, 16057186086, 44929879114, 125962026154, 353773417487, 995269027339
Offset: 0

Views

Author

Marko Riedel, Sep 18 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 9$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n - 1, n - 1, 9, 9]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)

Formula

Functional equation of G.f. is T(z) = z + z*Sum_{q=1..9} Z(S_q)(T(z)) with Z(S_q) the cycle index of the symmetric group. Alternate FEQ is
T(z) = 1 + z*Z(S_9)(T(z)).
a(n) = Sum_{j=1..9} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 20 2017
a(n) / a(n+1) ~ 0.338343552789108712866488147828528012266693326385052387884853... - Robert A. Russell, Feb 11 2023
Previous Showing 11-20 of 86 results. Next