cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A001828 Related to graded partially ordered sets.

Original entry on oeis.org

1, 5, 33, 287, 3309, 50975, 1058493, 29885567, 1156711869, 61815727295, 4589058616413, 475576073939807, 69061902766811229, 14093318360697120095, 4049931601653596366013, 1641314561238334948886207, 939097032426474389539281789
Offset: 0

Views

Author

Keywords

Comments

Corresponds to the numbers c(5,n) in the Klarner paper. - Sean A. Irvine, Sep 24 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A361950.

Formula

a(n) = Sum_{p+q+r+s+t=n} (n!/p!q!r!s!t!) 2^(pq+qr+rs+st) where (p,q,r,s,t) is any nonnegative composition of n. - Sean A. Irvine, Sep 24 2015

Extensions

More terms from Sean A. Irvine, Sep 24 2015

A001829 Related to graded partially ordered sets.

Original entry on oeis.org

1, 6, 46, 450, 5650, 91866, 1957066, 55363650, 2109599650, 109773407466, 7894945079386, 792252362302770, 111671194813402930, 22202849561274787866, 6241728810901739517226, 2484011055161613143144610, 1400187830319472451472442690
Offset: 0

Views

Author

Keywords

Comments

Corresponds to the numbers c(6,n) in the Klarner paper. - Sean A. Irvine, Sep 24 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=6 of A361950.

Formula

a(n) = Sum_{p+q+r+s+t+u=n} (n!/p!q!r!s!t!u!) 2^(pq+qr+rs+st+tu) where (p,q,r,s,t,u) is any nonnegative composition of n. - Sean A. Irvine, Sep 24 2015

A001830 Related to graded partially ordered sets.

Original entry on oeis.org

1, 7, 61, 661, 8953, 152917, 3334921, 94354981, 3528929353, 177999003157, 12340001650921, 1194005625114661, 162936187792764073, 31536761103831315157, 8677703806537883683081, 3395880602480076153665701, 1889190751946097573211698313
Offset: 0

Views

Author

Keywords

Comments

Corresponds to the numbers c(7,n) in the Klarner paper. - Sean A. Irvine, Sep 24 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=7 of A361950.

Formula

a(n) = Sum_{p+q+r+s+t+u+v=n} (n!/p!q!r!s!t!u!v!) 2^(pq+qr+rs+st+tu+uv) where (p,q,r,s,t,u,v) is any nonnegative composition of n. - Sean A. Irvine, Sep 24 2015

Extensions

More terms from Sean A. Irvine, Sep 24 2015

A006201 Number of colorings of labeled graphs on n nodes using exactly 3 colors, divided by 48.

Original entry on oeis.org

0, 0, 1, 24, 640, 24000, 1367296, 122056704, 17282252800, 3897054412800, 1400795928395776, 802530102499344384, 732523556206878392320, 1064849635418836398243840, 2464403435614136308036796416
Offset: 1

Views

Author

Keywords

Comments

Equals 1/48*A213442. - Peter Bala, Apr 12 2013

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, table 1.5.1, column 3 (divided by 8).
  • R. C. Read, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000683. A diagonal of A058843. A213442.

Programs

  • Mathematica
    F2[n_] := Sum[Binomial[n, r]*2^(r*(n-r)), {r, 1, n-1}]; F3[n_] := Sum[Binomial[n, r]*2^(r*(n-r))*F2[r], {r, 1, n-1}]; a[n_] := F3[n]/48; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Mar 06 2014, after Maple code in A213442 *)
  • PARI
    seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^3)/48, -n)} \\ Andrew Howroyd, Nov 30 2018

Formula

Let E(x) = sum {n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function is 1/48*(E(x) - 1)^3 = x^3/(3!*2^3) + 24*x^4/(4!*2^6) + 640*x^6/(5!*2^10) + ... (see Read). - Peter Bala, Apr 12 2013

Extensions

More terms from Vladeta Jovovic, Feb 03 2000

A004100 Number of labeled nonseparable bipartite graphs on n nodes.

Original entry on oeis.org

0, 1, 0, 3, 10, 355, 6986, 297619, 15077658, 1120452771, 111765799882, 15350524923547, 2875055248515242, 738416821509929731, 260316039943139322858, 126430202628042630866787, 84814075550928212558332858, 78847417416749666369637926851
Offset: 1

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    b[n_] := Log[Sum[Exp[2^k*x + O[x]^n]*x^k/k!, {k, 0, n}]/2];
    seq[n_] := CoefficientList[-Log[2] + Log[x/InverseSeries[x*D[b[n], x]]], x]*Table[(2k)!!, {k, 0, n-2}];
    seq[19] (* Jean-François Alcover, Sep 04 2019, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A001832 as e.g.f.
    b(n)={log(sum(k=0, n, exp(2^k*x + O(x*x^n))*x^k/k!))/2}
    seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(b(n))))), -n)} \\ Andrew Howroyd, Sep 26 2018

Extensions

a(16) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference

A193199 G.f.: A(x) = Sum_{n>=0} x^n/(1 - 4^n*x)^n.

Original entry on oeis.org

1, 1, 5, 49, 1025, 42241, 3610625, 609251329, 210923290625, 144320565411841, 201501092228890625, 556475188311619534849, 3125896980250691972890625, 34751531654955460673195212801, 784223845648499469575195012890625
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 1025*x^4 + 42241*x^5 +...
where:
A(x) = 1 + x/(1-4*x) + x^2/(1-16*x)^2 + x^3/(1-64*x)^3 + x^4/(1-256*x)^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1);A=1+sum(m=1,n,x^m/(1-4^m*x +x*O(x^n))^m);polcoeff(A,n)}
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*4^(k*(n-k))))}

Formula

a(n) = Sum_{k=0..n-1} binomial(n-1,k)*4^(k*(n-k)) for n>0 with a(0)=1.

A000426 Coefficients of ménage hit polynomials.

Original entry on oeis.org

0, 1, 1, 1, 8, 35, 211, 1459, 11584, 103605, 1030805, 11291237, 135015896, 1749915271, 24435107047, 365696282855, 5839492221440, 99096354764009, 1780930394412009, 33789956266629001, 674939337282352360, 14157377139256183723, 311135096550816014651
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.

Crossrefs

Cf. A000179, A000271. A diagonal of A058057.

Programs

  • Magma
    [0] cat [&+[(-1)^k*Factorial(2*n-k-1)*Factorial(n-k) / (Factorial(2*n-2*k)*Factorial(k-2)): k in [2..n]]: n in [2..25]]; // Vincenzo Librandi, Jun 11 2019
  • Mathematica
    Table[Sum[(-1)^k*(2*n-k-1)!*(n-k)!/((2*n-2*k)!*(k-2)!),{k,2,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 26 2012 *)

Formula

a(n) = Sum_{k=2..n} (-1)^k*(2n-k-1)!*(n-k)!/((2n-2k)!*(k-2)!).
a(n) = A000033(n)/n.
a(n) = ((2*n-5)*a(n-1) + (5*n-11)*a(n-2) + (5*n-14)*a(n-3) + (2*n-5)*a(n-4) + 2*a(n-5))/2 for n >= 6.
Shorter recurrence: (14*n-67)*a(n) = (14*n^2-95*n+137)*a(n-1) + (14*n^2-105*n+180)*a(n-2) - 24*a(n-4) + (57-10*n)*a(n-3). - Vaclav Kotesovec, Oct 26 2012
a(n) ~ 2/e^2*(n-1)!. - Vaclav Kotesovec, Oct 26 2012
a(n) = round((exp(-2)*(8*BesselK(n,2) - (4*n-10)*BesselK(n-1,2)))) for n > 6. - Mark van Hoeij, Jun 09 2019
a(n)+2*a(n+p)+a(n+2*p) is divisible by p for any prime p. - Mark van Hoeij, Jun 13 2019

Extensions

Edited by David W. Wilson, Dec 27 2007

A000673 Number of bicentered 3-valent (or boron, or binary) trees with n nodes.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 2, 6, 8, 18, 30, 67, 127, 275, 551, 1192, 2507, 5475, 11820, 26007, 57077, 126686, 281625, 630660, 1416116, 3195784, 7232624, 16430563, 37429146, 85528079, 195940960, 450074270, 1036226173, 2391193488, 5529420585
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)

A000675 Number of centered 3-valent (or boron, or binary) trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 4, 5, 10, 19, 36, 68, 138, 277, 581, 1218, 2591, 5545, 12026, 26226, 57719, 127685, 284109, 634919, 1425516, 3212890, 7269605, 16504439, 37592604, 85876345, 196717882, 451768247, 1039990913, 2399476030, 5547849750
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] (* Robert A. Russell, Sep 15 2018 *)

A000685 Number of 3-colored labeled graphs on n nodes, divided by 3.

Original entry on oeis.org

1, 5, 41, 545, 11681, 402305, 22207361, 1961396225, 276825510401, 62368881977345, 22413909724518401, 12840603873823473665, 11720394922432296755201, 17037597932370037286600705
Offset: 1

Views

Author

Keywords

Comments

Sequence represents 1/3 of the number of 3-colored labeled graphs on n nodes. Indeed, on p. 413 of the Read paper, column 3 is 3, 15, 123, 1635, ...; or see A047863. - Emeric Deutsch, May 06 2004

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    c[0]:=1: for n from 1 to 30 do c[n]:=sum(binomial(n,i)*2^(i*(n-i)),i=0..n) od: a:=n->(1/3)*sum(binomial(n,j)*2^(j*(n-j))*c[j],j=0..n): seq(a(n),n=1..19);
  • Mathematica
    a[n_] := 1/3*Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; Table[ a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)

Formula

a(n) = (1/3)Sum_{j=0..n} binomial(n, j)*2^(j(n-j))*c(j) where c(n) = Sum_{i=0..n} binomial(n, i)*2^(i(n-i)) = A047863(n). - Emeric Deutsch, May 06 2004
From Peter Bala, Apr 12 2013: (Start)
a(n) = 1/3*A191371(n). Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/3*E(x)^3 - 1/3 = Sum_{n >= 1} a(n)*x^n/(n!*2^C(n,2)) = x + 5*x^2/(2!*2) + 41*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Read). For examples see A047863 (k = 2), A191371 (k = 3) and A223887 (k = 4). (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com) and Emeric Deutsch, May 05 2004
Previous Showing 11-20 of 28 results. Next