cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 2219 results. Next

A291539 a(n) = PrimePi(n^3) - PrimePi(n) * PrimePi(n^2), where PrimePi = A000720.

Original entry on oeis.org

0, 2, 1, 6, 3, 14, 8, 25, 41, 68, 67, 99, 93, 136, 188, 240, 229, 303, 306, 383, 467, 562, 566, 688, 795, 922, 1066, 1227, 1247, 1421, 1446, 1620, 1826, 2036, 2283, 2511, 2566, 2843, 3115, 3401, 3431, 3746, 3827, 4163, 4526, 4895, 4981, 5369, 5743, 6229, 6712, 7165, 7202, 7743, 8258, 8835, 9453, 9999, 10132, 10736
Offset: 1

Views

Author

Jonathan Sondow, Aug 25 2017

Keywords

Comments

All terms are positive except a(1) = 0, by the PNT with error term for large n and computation for smaller n. In particular, PrimePi(n^3) > PrimePi(n) * PrimePi(n)^2 for n > 1.
For PrimePi(n) * PrimePi(n^2) - PrimePi(n)^3, see A291540.
For PrimePi(n^3) - PrimePi(n)^3, see A291538.
For prime(n) * prime(n^2) - prime(n^3), see A291541.

Examples

			a(2) = PrimePi(2^3) - PrimePi(2) * PrimePi(2^2) = 4 - 1 * 2 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[n^3] - PrimePi[n]*PrimePi[n^2], {n, 60}]
  • PARI
    a(n) = primepi(n^3) - primepi(n) * primepi(n^2); \\ Michel Marcus, Sep 10 2017

Formula

a(n) = A000720(n^3) - A000720(n) * A000720(n)^2.
a(n) = A291538(n) - A291540(n).
a(n) ~ (n^3 / log(n))*(1/3 - 1/(2*log(n)^2)) as n tends to infinity.

A291540 a(n) = PrimePi(n) * PrimePi(n^2) - PrimePi(n)^3, where PrimePi = A000720.

Original entry on oeis.org

0, 1, 0, 4, 0, 6, -4, 8, 24, 36, 25, 45, 18, 48, 72, 108, 84, 119, 64, 112, 168, 224, 162, 216, 297, 369, 432, 504, 460, 540, 451, 561, 660, 770, 869, 979, 900, 1008, 1152, 1284, 1222, 1365, 1218, 1386, 1540, 1722, 1560, 1755, 1980, 2130, 2295, 2520, 2448, 2640, 2848, 3024, 3216, 3488, 3366, 3638, 3510, 3744, 4050, 4320, 4572
Offset: 1

Views

Author

Jonathan Sondow, Aug 25 2017

Keywords

Comments

All terms are positive except a(1) = a(3) = a(5) = 0 and a(7) = -4, by the PNT with error term for large n and computation for smaller n. In particular, PrimePi(n) * PrimePi(n^2) > PrimePi(n)^3, for n > 7.
For PrimePi(n^3) - PrimePi(n) * PrimePi(n^2), see A291539.
For PrimePi(n^3) - PrimePi(n)^3, see A291538.
For prime(n)^3 - prime(n) * prime(n^2), see A291542.

Examples

			a(7) = PrimePi(7) * PrimePi(7^2) - PrimePi(7)^3 = 4 * 15 - 4^3 = -4.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[n] * PrimePi[n^2] - PrimePi[n]^3, {n, 65}]
  • PARI
    a(n) = primepi(n) * primepi(n^2) - primepi(n)^3; \\ Michel Marcus, Sep 10 2017

Formula

A291539(n) + a(n) = A291538(n).

A293447 Fully additive with a(p^e) = e * A000225(PrimePi(p)), where PrimePi(n) = A000720(n) and A000225(n) = (2^n)-1.

Original entry on oeis.org

0, 1, 3, 2, 7, 4, 15, 3, 6, 8, 31, 5, 63, 16, 10, 4, 127, 7, 255, 9, 18, 32, 511, 6, 14, 64, 9, 17, 1023, 11, 2047, 5, 34, 128, 22, 8, 4095, 256, 66, 10, 8191, 19, 16383, 33, 13, 512, 32767, 7, 30, 15, 130, 65, 65535, 10, 38, 18, 258, 1024, 131071, 12, 262143, 2048, 21, 6, 70, 35, 524287, 129, 514, 23, 1048575, 9, 2097151, 4096, 17, 257, 46, 67, 4194303, 11, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2017

Keywords

Comments

Original, equal definition: totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n).

Crossrefs

Programs

Formula

Totally additive with a(p^e) = e * A005187(2^(PrimePi(p)-1)), where PrimePi(n) = A000720(n).
a(1) = 0, and for n > 1, a(n) = A005187(A087207(n)) + a(A003557(n)).
Other identities:
For all n >= 1, a(A293442(n)) = A046645(n).
For all n >= 2 and all k >= 0, a(n^k) = k*a(n).
For all n >= 1, a(n) >= A048675(n) >= A331740(n) >= A331591(n).

Extensions

Definition simplified by Antti Karttunen, Feb 05 2020

A332212 Fully multiplicative with a(p) = A332211(A000720(p)).

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 31, 12, 11, 10, 21, 16, 127, 18, 13, 28, 15, 62, 17, 24, 49, 22, 27, 20, 19, 42, 23, 32, 93, 254, 35, 36, 29, 26, 33, 56, 8191, 30, 37, 124, 63, 34, 41, 48, 25, 98, 381, 44, 43, 54, 217, 40, 39, 38, 131071, 84, 47, 46, 45, 64, 77, 186, 524287, 508, 51, 70, 53, 72, 59, 58, 147, 52, 155, 66, 61, 112, 81, 16382, 67, 60
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2020

Keywords

Crossrefs

Cf. A000043, A000668, A000720, A332211, A332213 (inverse permutation), A332214.

Programs

  • PARI
    \\ Needs also code from A332211:
    A332212(n) = { my(f=factor(n)); f[,1] = apply(A332211,apply(primepi,f[,1])); factorback(f); };

Formula

a(1) = 1, a(p^e) = A332211(A000720(p))^e, a(m*n) = a(m)*a(n).

A333365 T(n,k) is the number of times that prime(k) is the least part in a partition of n into prime parts; triangle T(n,k), n >= 0, 1 <= k <= max(1,A000720(A331634(n))), read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 2, 1, 3, 1, 3, 1, 1, 4, 1, 0, 0, 1, 5, 1, 1, 6, 2, 0, 0, 0, 1, 7, 2, 0, 1, 9, 2, 1, 10, 3, 1, 12, 3, 1, 0, 0, 0, 1, 14, 3, 1, 1, 17, 4, 1, 0, 0, 0, 0, 1, 19, 5, 1, 1, 23, 5, 1, 1, 26, 6, 2, 0, 1, 30, 7, 2, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2020

Keywords

Examples

			In the A000607(11) = 6 partitions of 11 into prime parts, (11), 335, 227, 2225, 2333, 22223 the least parts are 11 = prime(5) (once), 3 = prime(2)(once), and 2 = prime(1) (four times), whereas 5 and 7 (prime(3) and prime(4)) do not occur. Thus row 11 is [4,1,0,0,1].
Triangle T(n,k) begins:
   0    ;
   0    ;
   1    ;
   0, 1    ;
   1       ;
   1, 0, 1    ;
   1, 1       ;
   2, 0, 0, 1    ;
   2, 1          ;
   3, 1          ;
   3, 1, 1       ;
   4, 1, 0, 0, 1    ;
   5, 1, 1          ;
   6, 2, 0, 0, 0, 1    ;
   7, 2, 0, 1          ;
   9, 2, 1             ;
  10, 3, 1             ;
  12, 3, 1, 0, 0, 0, 1    ;
  14, 3, 1, 1             ;
  17, 4, 1, 0, 0, 0, 0, 1    ;
  19, 5, 1, 1                ;
  ...
		

Crossrefs

Columns k=1-2 give: A000607(n-2) for n>1, A099773(n-3) for n>2.
Row sums give A000607 for n>0.
Length of n-th row is A000720(A331634(n)) for n>1.
Indices of rows without 1's: A330433.

Programs

  • Maple
    b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q->
          add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p))))
        end:
    T:= proc(n) option remember; (p-> seq(`if`(isprime(i),
          coeff(p, x, i), [][]), i=2..max(2,degree(p))))(b(n, 2, x))
        end:
    seq(T(n), n=0..23);
  • Mathematica
    b[n_, p_, t_] := b[n, p, t] = If[n == 0, 1, If[p > n, 0, With[{q = NextPrime[p]}, Sum[b[n - p*j, q, 1], {j, 1, n/p}]*t^p + b[n, q, t]]]];
    T[n_] := If[n < 2, {0}, MapIndexed[If[PrimeQ[#2[[1]]], #1, Nothing]&, Rest @ CoefficientList[b[n, 2, x], x]]];
    T /@ Range[0, 23] // Flatten (* Jean-François Alcover, Mar 30 2021, after Alois P. Heinz *)

Formula

T(n,pi(n)) = A010051(n) for n > 1.
T(p,pi(p)) = 1 if p is prime.
T(prime(k),k) = 1 for k >= 1.
Recursion: T(n,k) = Sum_{q=k..pi(n-p)} T(n-p, q) with p := prime(k) and T(n,k) = 0 if n < p, or 1 if n = p. - David James Sycamore, Mar 28 2020

A354203 Fully multiplicative with a(p^e) = A354201(A000720(p))^e.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 7, 1, 5, 3, 2, 1, 13, 1, 11, 2, 3, 7, 19, 1, 4, 5, 1, 3, 17, 2, 23, 1, 7, 13, 6, 1, 29, 11, 5, 2, 37, 3, 31, 7, 2, 19, 43, 1, 9, 4, 13, 5, 41, 1, 14, 3, 11, 17, 47, 2, 53, 23, 3, 1, 10, 7, 59, 13, 19, 6, 67, 1, 61, 29, 4, 11, 21, 5, 71, 2, 1, 37, 79, 3, 26, 31, 17, 7, 73, 2, 15, 19, 23
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Left inverse of A354202.

Programs

  • PARI
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };

A047885 Array a(m,n) = pi(m+n) - pi(m) - pi(n) read by antidiagonals, where pi() = A000720 (m,n >= 0).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -1, -2, -1, -2, -1, -2, -1, 0, 0
Offset: 0

Views

Author

Keywords

Comments

A212210-A212213 are the preferred versions of this array.

Examples

			Beginning of array is
  0  0  0  0  0  0  0  0 ...
  0  1  1  0  1  0  1  0 ...
  0  1  0  0  0  0 -1 ...
  0  0  0 -1  0 -1 -1 ...
  ...
		

Crossrefs

A066457 Numbers k such that product of factorials of digits of k equals pi(k) (A000720).

Original entry on oeis.org

13, 1512, 1520, 1521, 12016, 12035, 226130351, 209210612202, 209210612212, 209210612220, 209210612221, 13030323000581525
Offset: 1

Views

Author

Jason Earls, Jan 02 2002

Keywords

Comments

The Caldwell/Honaker paper does not discuss this, only suggests further areas of investigation.
There are no other members of the sequence up to and including n=1000000. - Harvey P. Dale, Jan 07 2002
If 10n is in the sequence and 10n+1 is composite then 10n+1 is also in the sequence (the proof is easy). - Farideh Firoozbakht, Oct 24 2008
a(13) > 10^19 if it exists. - Chai Wah Wu, May 03 2018

Examples

			12016 is a term because there are exactly 1!*2!*0!*1!*6! (or 1440) prime numbers less than or equal to 12016.
pi(209210612202) = 8360755200 = 2!*0!*9!*2!*1!*0!*6!*1!*2!*2!*0!*2!. [Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008]
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000000], Times@@( # !&/@IntegerDigits[ # ])==PrimePi[ # ]&]
  • PARI
    isok(n) = my(d = digits(n)); prod(k=1, #d, d[k]!) == primepi(n); \\ Michel Marcus, May 04 2018

Extensions

a(7) from Farideh Firoozbakht, Apr 20 2005
a(8)-a(11) from Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008
a(12) from Chai Wah Wu, May 03 2018

A157190 Primes which produce records in A157188, at index i=pi(a(n)) (pi=A000720).

Original entry on oeis.org

2, 3, 59, 71, 1151, 2399, 7559, 42839, 110879, 181439, 241919, 262079, 453599, 665279, 1713599, 2827439, 6425999, 11309759, 12700799, 14137199, 16707599, 37837799, 45239039, 64864799, 82162079, 86486399, 93562559, 260124479, 410810399, 735134399, 950019839
Offset: 1

Views

Author

M. F. Hasler, Mar 11 2009

Keywords

Comments

Primes that can be written in more ways as p*q-(p+q) (p,q prime) than any smaller prime.

Crossrefs

Formula

A157187(a(n)) = A157188(A000720(a(n))) > A157187(p) for all primes p < a(n).

Extensions

a(28) corrected by M. F. Hasler, Mar 15 2009

A237615 a(n) = |{0 < k < n: k^2 + k - 1 and pi(k*n) are both prime}|, where pi(.) is given by A000720.

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 2, 1, 2, 1, 3, 2, 1, 4, 1, 3, 4, 4, 2, 4, 3, 6, 2, 2, 2, 3, 7, 4, 3, 4, 5, 6, 1, 3, 2, 3, 9, 3, 3, 4, 7, 5, 8, 5, 2, 2, 5, 5, 4, 5, 6, 4, 5, 6, 10, 6, 6, 10, 9, 9, 10, 12, 2, 8, 7, 3, 6, 6, 4, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 10 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 5.
(ii) For each n = 4, 5, ..., there is a positive integer k < n with k^2 + k - 1 and pi(k*n) + 1 both prime. Also, for any integer n > 6, there is a positive integer k < n with k^2 + k - 1 and pi(k*n) - 1 both prime.
(iii) For every integer n > 15, there is a positive integer k < n such that pi(k) - 1 and pi(k*n) are both prime.
Note that part (i) is a refinement of the first assertion in the comments in A237578.

Examples

			a(8) = 1 since 4^2 + 4 - 1 = 19 and pi(4*8) = 11 are both prime.
a(33) = 1 since 28^2 + 28 - 1 = 811 and pi(28*33) = 157 are both prime.
		

Crossrefs

Programs

  • Mathematica
    p[k_,n_]:=PrimeQ[k^2+k-1]&&PrimeQ[PrimePi[k*n]]
    a[n_]:=Sum[If[p[k,n],1,0],{k,1,n-1}]
    Table[a[n],{n,1,70}]
Previous Showing 51-60 of 2219 results. Next