A326906
Number of sets of subsets of {1..n} that are closed under union and cover all n vertices.
Original entry on oeis.org
2, 2, 8, 90, 4542, 2747402, 151930948472, 28175295407840207894
Offset: 0
The a(0) = 2 through a(2) = 8 sets of subsets:
{} {{1}} {{1,2}}
{{}} {{},{1}} {{},{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty sets is
A102894.
The case with a single covering edge is
A102895.
The case also closed under intersection is
A326878 for n > 0.
The same for intersection instead of union is (also)
A326906.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}]
A326883
Number of unlabeled set-systems with {} that are closed under intersection and cover n vertices.
Original entry on oeis.org
1, 1, 4, 22, 302, 28630, 216533404, 5592325966377736
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(3) = 22 set-systems:
{{}} {{}{1}} {{}{12}} {{}{123}}
{{}{1}{2}} {{}{1}{23}}
{{}{2}{12}} {{}{3}{123}}
{{}{1}{2}{12}} {{}{1}{2}{3}}
{{}{23}{123}}
{{}{1}{3}{23}}
{{}{2}{3}{123}}
{{}{3}{13}{23}}
{{}{1}{23}{123}}
{{}{3}{23}{123}}
{{}{1}{2}{3}{23}}
{{}{1}{2}{3}{123}}
{{}{2}{3}{13}{23}}
{{}{1}{3}{23}{123}}
{{}{2}{3}{23}{123}}
{{}{3}{13}{23}{123}}
{{}{1}{2}{3}{13}{23}}
{{}{1}{2}{3}{23}{123}}
{{}{2}{3}{13}{23}{123}}
{{}{1}{2}{3}{12}{13}{23}}
{{}{1}{2}{3}{13}{23}{123}}
{{}{1}{2}{3}{12}{13}{23}{123}}
The case also closed under union is
A001930.
The connected case (i.e., with maximum) is
A108798.
The same for union instead of intersection is (also)
A108798.
A326901
Number of set-systems (without {}) on n vertices that are closed under intersection.
Original entry on oeis.org
1, 2, 6, 32, 418, 23702, 16554476, 1063574497050, 225402367516942398102
Offset: 0
The a(3) = 32 set-systems:
{} {{1}} {{1}{12}} {{1}{12}{13}} {{1}{12}{13}{123}}
{{2}} {{1}{13}} {{2}{12}{23}} {{2}{12}{23}{123}}
{{3}} {{2}{12}} {{3}{13}{23}} {{3}{13}{23}{123}}
{{12}} {{2}{23}} {{1}{12}{123}}
{{13}} {{3}{13}} {{1}{13}{123}}
{{23}} {{3}{23}} {{2}{12}{123}}
{{123}} {{1}{123}} {{2}{23}{123}}
{{2}{123}} {{3}{13}{123}}
{{3}{123}} {{3}{23}{123}}
{{12}{123}}
{{13}{123}}
{{23}{123}}
The case with union instead of intersection is
A102896.
The case closed under union and intersection is
A326900.
The BII-numbers of these set-systems are
A326905.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A001827
Related to graded partially ordered sets.
Original entry on oeis.org
1, 4, 22, 166, 1726, 24814, 494902, 13729846, 531077086, 28697950174, 2170176736102, 230007989092006, 34211282155446286, 7149766552058591374, 2101690590380890192342, 869808621195903097079446, 507261036269544624540347326
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..112
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- Index entries for sequences related to posets
A001828
Related to graded partially ordered sets.
Original entry on oeis.org
1, 5, 33, 287, 3309, 50975, 1058493, 29885567, 1156711869, 61815727295, 4589058616413, 475576073939807, 69061902766811229, 14093318360697120095, 4049931601653596366013, 1641314561238334948886207, 939097032426474389539281789
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..112
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- Index entries for sequences related to posets
A001829
Related to graded partially ordered sets.
Original entry on oeis.org
1, 6, 46, 450, 5650, 91866, 1957066, 55363650, 2109599650, 109773407466, 7894945079386, 792252362302770, 111671194813402930, 22202849561274787866, 6241728810901739517226, 2484011055161613143144610, 1400187830319472451472442690
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..112
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- Index entries for sequences related to posets
A001830
Related to graded partially ordered sets.
Original entry on oeis.org
1, 7, 61, 661, 8953, 152917, 3334921, 94354981, 3528929353, 177999003157, 12340001650921, 1194005625114661, 162936187792764073, 31536761103831315157, 8677703806537883683081, 3395880602480076153665701, 1889190751946097573211698313
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..112
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- Index entries for sequences related to posets
A326898
Number of unlabeled topologies with up to n points.
Original entry on oeis.org
1, 2, 5, 14, 47, 186, 904, 5439, 41418, 404501, 5122188, 84623842, 1828876351, 51701216248, 1908493827243, 91755916071736, 5729050033597431
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(3) = 14 topologies:
{} {} {} {}
{}{1} {}{1} {}{1}
{}{12} {}{12}
{}{2}{12} {}{123}
{}{1}{2}{12} {}{2}{12}
{}{3}{123}
{}{23}{123}
{}{1}{2}{12}
{}{1}{23}{123}
{}{3}{23}{123}
{}{2}{3}{23}{123}
{}{3}{13}{23}{123}
{}{2}{3}{13}{23}{123}
{}{1}{2}{3}{12}{13}{23}{123}
A326904
Number of unlabeled set-systems (without {}) on n vertices that are closed under intersection.
Original entry on oeis.org
1, 2, 4, 10, 38, 368, 29328, 216591692, 5592326399531792
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
{} {} {} {}
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{2},{1,2}} {{1,2,3}}
{{2},{1,2}}
{{3},{1,2,3}}
{{2,3},{1,2,3}}
{{3},{1,3},{2,3}}
{{3},{2,3},{1,2,3}}
{{3},{1,3},{2,3},{1,2,3}}
The covering case is
A108800(n - 1).
The case with an edge containing all of the vertices is
A193674(n - 1).
The case with union instead of intersection is
A193674.
Cf.
A000798,
A001930,
A006058,
A102895,
A102898,
A326876,
A326866,
A326878,
A326882,
A326903,
A326906.
A003431
Number of isomorphism classes of connected irreducible posets with n labeled points.
Original entry on oeis.org
1, 1, 0, 0, 1, 12, 104, 956, 10037, 126578, 1971005, 38569954, 958347642, 30400603560, 1234260982770, 64187360439352, 4275470549123119
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. R. Finch, Series-parallel networks
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
Comments