cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 83 results. Next

A085628 Number of antisymmetric transitive binary relations on n labeled points.

Original entry on oeis.org

1, 2, 12, 152, 3504, 135392, 8321472, 784621952, 110521185024, 22789653765632, 6769730814753792, 2859584874712881152, 1699286839524775931904, 1407801166901961190203392, 1613567168628788544015286272, 2541721059997800475952740401152, 5470980000021882982488097199161344
Offset: 0

Views

Author

Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004

Keywords

Crossrefs

Cf. A079265 (unlabeled antisymmetric transitive relations), A001035 (labeled partial orders), A000798 (labeled reflexive transitive relations), A006905 (labeled transitive relations).

Programs

Formula

a(n) = 2^n * A001035(n) = A000079(n) * A001035(n)
E.g.f.: A(2*x) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014

Extensions

2 more terms from Charles R Greathouse IV, Aug 31 2006

A326900 Number of set-systems on n vertices that are closed under union and intersection.

Original entry on oeis.org

1, 2, 6, 29, 232, 3032, 62837, 2009408, 97034882, 6952703663, 728107141058, 109978369078580, 23682049666957359, 7195441649260733390, 3056891748255795885338, 1801430622263459795017565, 1462231768717868324127642932, 1624751185398704445629757084188, 2457871026957756859612862822442301
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint.

Examples

			The a(0) = 1 through a(3) = 29 set-systems:
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{2}}        {{2}}
             {{1,2}}      {{3}}
             {{1},{1,2}}  {{1,2}}
             {{2},{1,2}}  {{1,3}}
                          {{2,3}}
                          {{1,2,3}}
                          {{1},{1,2}}
                          {{1},{1,3}}
                          {{2},{1,2}}
                          {{2},{2,3}}
                          {{3},{1,3}}
                          {{3},{2,3}}
                          {{1},{1,2,3}}
                          {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Binomial transform of A006058 (the covering case).
The case closed under union only is A102896.
The case with {} allowed is A306445.
The BII-numbers of these set-systems are A326876.
The case closed under intersection only is A326901.
The unlabeled version is A326908.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}]
    (* Second program: *)
    A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {, }][[All, 2]];
    a[n_] := Sum[Binomial[n, k] A006058[[k + 1]], {k, 0, n}];
    a /@ Range[0, 18] (* Jean-François Alcover, Jan 01 2020 *)

Extensions

a(16)-a(18) from A006058 by Jean-François Alcover, Jan 01 2020

A326902 Number of set-systems (without {}) covering n vertices that are closed under intersection.

Original entry on oeis.org

1, 1, 3, 19, 319, 21881, 16417973, 1063459099837, 225402359008808647339
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of a set-system that is closed under intersection can be disjoint.

Examples

			The a(0) = 1 through a(3) = 19 set-systems:
  {}  {{1}}  {{1,2}}      {{1,2,3}}
             {{1},{1,2}}  {{1},{1,2,3}}
             {{2},{1,2}}  {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The case closed under union and intersection is A006058.
The case with union instead of intersection is A102894.
The unlabeled version is A108800(n - 1).
The non-covering case is A326901.
The connected case is A326903.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A326901. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019

A326903 Number of set-systems (without {}) on n vertices that are closed under intersection and have an edge containing all of the vertices, or Moore families without {}.

Original entry on oeis.org

0, 1, 3, 16, 209, 11851, 8277238, 531787248525, 112701183758471199051
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint.
If {} is allowed, we get Moore families (A102896, cf A102895).

Examples

			The a(1) = 1 through a(3) = 16 set-systems:
  {{1}}  {{1,2}}      {{1,2,3}}
         {{1},{1,2}}  {{1},{1,2,3}}
         {{2},{1,2}}  {{2},{1,2,3}}
                      {{3},{1,2,3}}
                      {{1,2},{1,2,3}}
                      {{1,3},{1,2,3}}
                      {{2,3},{1,2,3}}
                      {{1},{1,2},{1,2,3}}
                      {{1},{1,3},{1,2,3}}
                      {{2},{1,2},{1,2,3}}
                      {{2},{2,3},{1,2,3}}
                      {{3},{1,3},{1,2,3}}
                      {{3},{2,3},{1,2,3}}
                      {{1},{1,2},{1,3},{1,2,3}}
                      {{2},{1,2},{2,3},{1,2,3}}
                      {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The case closed under union and intersection is A006058.
The case with union instead of intersection is A102894.
The unlabeled version is A193674.
The case without requiring the maximum edge is A326901.
The covering case is A326902.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],MemberQ[#,Range[n]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = A326901(n) / 2 for n > 0. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 10 2019

A326908 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 9, 23, 70, 256, 1160, 6599, 48017, 452518, 5574706, 90198548, 1919074899, 53620291147, 1962114118390, 93718030190126, 5822768063787557
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets:
  {}    {}       {}              {}
  {{}}  {{}}     {{}}            {{}}
        {{1}}    {{1}}           {{1}}
        {{}{1}}  {{12}}          {{12}}
                 {{}{1}}         {{}{1}}
                 {{}{12}}        {{123}}
                 {{2}{12}}       {{}{12}}
                 {{}{2}{12}}     {{}{123}}
                 {{}{1}{2}{12}}  {{2}{12}}
                                 {{3}{123}}
                                 {{}{2}{12}}
                                 {{23}{123}}
                                 {{}{3}{123}}
                                 {{}{23}{123}}
                                 {{}{1}{2}{12}}
                                 {{3}{23}{123}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{3}{13}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The labeled version is A306445.
Taking first differences and prepending 1 gives A326898.
Taking second differences and prepending two 1's gives A001930.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

A001928 Number of connected topologies with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 94, 512, 3485, 29515, 314474, 4255727, 73831813, 1653083021, 47941962135, 1803010446411, 87882300251730, 5543501326580737
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
  • J. A. Wright, personal communication.

Crossrefs

Programs

Formula

Inverse Euler transform of A001930. - Vladeta Jovovic, Jan 06 2006

Extensions

More terms from Vladeta Jovovic, Jan 06 2006

A046908 Number of irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 1, 7, 97, 2251, 80821, 4305127, 332273257, 36630174931, 5711638291981, 1249898984911567, 381230073532620577, 161042140788424003291, 93667063572594041040421, 74610767840852891620692727, 80997478506602342803118178457, 119313601058907927882431190269731, 237541348427311374857037021264415741
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

Cf. A046907.

Programs

  • Mathematica
    A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]; lg = Length[A001035];
    B[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    A[x_] = 2 - 1/B[x];
    CoefficientList[A[x] + O[x]^lg, x]*Range[0, lg - 1]! (* Jean-François Alcover, Jan 01 2020 *)

Formula

E.g.f.: A(x) = 2-1/B(x), where B(x) is e.g.f. of A001035. - Vladeta Jovovic, Jan 10 2006

Extensions

More terms from Vladeta Jovovic, Jan 10 2006
a(16)-a(18) from A001035 by Jean-François Alcover, Jan 01 2020

A122835 Number of topologies on n labeled elements in which no element belongs to any pair of noncomparable members of the topology.

Original entry on oeis.org

1, 1, 4, 19, 112, 811, 7024, 70939, 818752, 10630891, 153371344, 2433948859, 42137351392, 790287522571, 15962014455664, 345424786466779, 7973482022972032, 195556150543703851, 5078301994885267984
Offset: 0

Views

Author

Nathan K. McGregor (mcgregnk(AT)ese.wustl.edu), Sep 15 2006

Keywords

Comments

The number of topologies on n labeled elements is a fundamental sequence (A000798), which many mathematicians believe is impossible to completely determine.
The present sequence is an elegant recursion that enumerates the topologies on n labeled elements that can be "drawn" (as, for example, on page 76 of Munkres) in such a way that the boundaries of the subsets do not "cross" one another. Thus I recommend that topologies be classified as "planar" if their members can be drawn without crossings and "non-planar" otherwise.
This is analogous to the way in which subgroup lattices are called planar or non-planar. Using this terminology, the above sequence gives the number of planar topologies on n labeled elements. If the number of non-planar topologies on n labeled elements (see A122836) could be enumerated, then so could the total number of topologies on n labeled elements.
Another way to state the definition is that any two members of the topology are comparable or disjoint. - Rainer Rosenthal, Jan 02 2011
Conjectural closed form for n>0: 3*2^(k-3)(LerchPhi[1/4, -k, 1/2] + 2 PolyLog[-k, 1/4]) - 1/2. - Vladimir Reshetnikov, Jan 07 2011

References

  • J. Munkres, Topology, Prentice Hall, (2000), p. 76.

Crossrefs

Programs

  • Maple
    a122835:=proc(n) option remember; if n=0 then 1 else 2^(n-1) - 1 + add(a122835(n-k)*binomial(n,k),k=1..n); fi; end;
  • Mathematica
    a[n_]:=a[n]=2^(n-1)-1+Sum[a[n-k]*Binomial[n,k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,25}]
    a[ n_] := (3/4) * (PolyLog[ -n, 1/2] + Boole[n==0]) - 1/2 (* Michael Somos, Jan 07 2011 *)
  • PARI
    {a(n) = local(A); if( n<1, n==0, A = exp(x + x * O(x^n)) / 2; n! * polcoeff( (3/4) / (1 - A) - A, n))} /* Michael Somos, Jan 07 2011 */

Formula

a(n) = 2^(n-1) - 1 + Sum{C(n,k)*a(n-k), k = 1 ... n}
E.g.f.: (3/4) / (1 - exp(x)/2) - exp(x)/2. - Michael Somos, Jan 07 2011
a(n) = (A000629(n) + 0^n) * (3/4) - 1/2. - Michael Somos, Jan 07 2011

A366866 Number of binary relations R on [n] such that the transitive closure of R contains the identity relation.

Original entry on oeis.org

1, 1, 7, 253, 39463, 24196201, 56481554827, 502872837857293, 17309567681965278223, 2333553047265268677638161, 1243013506394568266481053180947, 2629978323181659930952963974617537173, 22170279317365870690118601982232935268994583
Offset: 0

Views

Author

Geoffrey Critzer, Oct 25 2023

Keywords

Comments

Equivalently, a(n) is the number of n X n Boolean relation matrices whose Frobenius normal form contains no 0-blocks on the diagonal. See Gregory, Kirkland, and Pullman.
Equivalently, a(n) is the number of labeled directed graphs on [n] (with self loops allowed) such that every strongly connected component contains at least one arc.
This sequence is a good upper-bound for the number of relations that converge to a quasi-order (A366252) which is only known for n <= 6.
If the transitive closure of a relation R contains the identity relation then there is exactly one transitive relation in {R,R^2,R^3...}. See Schwarz link.

Crossrefs

Programs

  • Mathematica
    nn = 12; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i,1,58}]];ggf[egf_]:=Normal[Series[egf, {x, 0, nn}]] /.Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[
      Series[1/ggf[Exp[- (s[2 x] - x)]], {x, 0, nn}], x]

Formula

Sum_{n>=0} a_n*x^n/(2^n*binomial(n,2)) = 1/(E(x) @ exp(-(s(2x)-x))) where E(x) = Sum_{n>=0} x^n/(2^n*binomial(n,2)), s(x) is the e.g.f. for A003030, and @ is the exponential Hadamard product (see Panafieu and Dovgal).

A046912 Number of irreducible quasiorders with n labeled points.

Original entry on oeis.org

1, 1, 2, 11, 147, 3412, 121553, 6353629, 476850636, 50811255045, 7636459252135, 1610584897516674, 474333338553730879, 194055026319667963777, 109692570582311591696890, 85221064877720762475072503, 90542406571528792666541430863, 130936936785995060562730057163556, 256634185641525450158992588551158389
Offset: 0

Views

Author

John A. Wright

Keywords

Crossrefs

Cf. A046911.

Programs

  • Mathematica
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]]; lg = Length[A000798];
    B[x_] = Sum[A000798[[n + 1]] x^n/n!, {n, 0, lg - 1}];
    A[x_] = 2 - 1/B[x];
    CoefficientList[A[x] + O[x]^lg, x]*Range[0, lg - 1]! (* Jean-François Alcover, Jan 01 2020 *)

Formula

E.g.f.: A(x) = 2-1/B(x), where B(x) is e.g.f. of A000798. - Vladeta Jovovic, Jan 10 2006

Extensions

Corrected and extended by Vladeta Jovovic, Jan 10 2006
a(16)-a(18) from A000798 by Jean-François Alcover, Jan 01 2020
Previous Showing 41-50 of 83 results. Next