cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A347801 Expansion of ( Sum_{k>=0} k^2 * q^(k^2) )^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 8, 0, 0, 16, 0, 18, 0, 0, 72, 0, 0, 0, 32, 81, 0, 128, 0, 0, 0, 0, 288, 50, 0, 0, 200, 0, 0, 256, 0, 450, 0, 0, 72, 0, 0, 288, 800, 0, 0, 0, 648, 0, 0, 0, 0, 723, 0, 1152, 392, 0, 0, 0, 0, 882, 0, 0, 1800, 0, 0, 0, 1696, 0, 0, 512, 0, 0, 0, 1296, 1152, 2450, 0, 0, 0, 0, 0, 2048, 0, 162, 0, 0, 4176, 0, 0, 0, 3200, 1458
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, (i^2+j^2==n)*(i*j)^2));
    
  • PARI
    my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=0, sqrtint(N), k^2*x^k^2)^2))

Formula

a(n) is sum of i^2 * j^2 for positive integers i,j such that i^2+j^2=n.

A000592 Number of nonnegative solutions of x^2 + y^2 = z in first n shells.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 13, 15, 17, 19, 20, 22, 26, 28, 30, 31, 33, 35, 37, 39, 41, 43, 45, 48, 50, 52, 54, 56, 58, 62, 64, 65, 67, 69, 71, 73, 75, 79, 81, 83, 85, 86, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 112, 113, 117, 119, 121, 123, 127, 129, 131, 133, 135, 137
Offset: 0

Views

Author

Keywords

Comments

Cumulative totals of nonzero values in (or distinct values in cumulative totals of) A000925. - Franklin T. Adams-Watters, Jun 21 2006

References

  • Hansraj Gupta, A table of values of N_2(t), Res. Bull. East Panjab Univ. 1952, (1952). no. 20, 13-93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000925.

Programs

  • Mathematica
    nn = 200; t = CoefficientList[Series[Sum[x^k^2, {k, 0, Sqrt[nn]}]^2, {x, 0, nn}], x]; Union[Accumulate[t]] (* Jean-François Alcover, Jul 20 2011, after T. D. Noe *)

Formula

N_2(t) = Sum_{j <= t} n_2(j) where n_2(j) is the number of nonnegative solutions (x,y) of x^2 + y^2 = j, the solution (x,y) being considered as different from (y,x) in case x != y.

Extensions

More terms from Franklin T. Adams-Watters, Jun 21 2006

A362961 a(n) = Sum_{b=0..floor(sqrt(n)), n-b^2 is square} b.

Original entry on oeis.org

1, 1, 0, 2, 3, 0, 0, 2, 3, 4, 0, 0, 5, 0, 0, 4, 5, 3, 0, 6, 0, 0, 0, 0, 12, 6, 0, 0, 7, 0, 0, 4, 0, 8, 0, 6, 7, 0, 0, 8, 9, 0, 0, 0, 9, 0, 0, 0, 7, 13, 0, 10, 9, 0, 0, 0, 0, 10, 0, 0, 11, 0, 0, 8, 20, 0, 0, 10, 0, 0, 0, 6, 11, 12, 0, 0, 0, 0, 0, 12, 9, 10, 0
Offset: 1

Views

Author

Darío Clavijo, May 10 2023

Keywords

Comments

a(n) = 0 if n in A022544.
a(n) > 0 if n in A001481.

Crossrefs

Cf. A143574 (sum of b^2), A000925.

Programs

  • Mathematica
    a[n_]:=Sum[b Boole[IntegerQ[Sqrt[n-b^2]]],{b,0,Floor[Sqrt[n]]}]; Array[a,83] (* Stefano Spezia, May 15 2023 *)
  • PARI
    a(n) = sum(b=0, sqrtint(n), if (issquare(n-b^2), b)); \\ Michel Marcus, May 16 2023
  • Python
    from gmpy2 import *
    a = lambda n: sum([b for b in range(0, isqrt(n) + 1) if is_square(n - (b*b))])
    print([a(n) for n in range(1, 84)])
    
  • Python
    from sympy import divisors
    from sympy.solvers.diophantine.diophantine import cornacchia
    def A362961(n):
        c = 0
        for d in divisors(n):
            if (k:=d**2)>n:
                break
            q, r = divmod(n,k)
            if not r:
                c += sum(d*(a[0]+(a[1] if a[0]!=a[1] else 0)) for a in cornacchia(1,1,q) or [])
        return c # Chai Wah Wu, May 15 2023
    

A217868 a(n) is the sum of total number of nonnegative integer solutions to each of a^2 + b^2 = n, a^2 + 2*b^2 = n, a^2 + 3*b^2 = n and a^2 + 7*b^2 = n. (Order matters for the equation a^2+b^2 = n).

Original entry on oeis.org

5, 2, 2, 6, 2, 1, 2, 3, 6, 2, 2, 3, 3, 0, 0, 7, 3, 3, 2, 2, 1, 1, 1, 1, 7, 2, 3, 4, 3, 0, 1, 4, 2, 3, 0, 7, 4, 1, 1, 2, 3, 0, 3, 2, 2, 0, 0, 3, 6, 4, 2, 5, 3, 2, 0, 1, 3, 2, 1, 0, 3, 0, 2, 8, 4, 2, 3, 3, 0, 0, 1, 4, 4, 2, 2, 4, 1, 0, 2, 2, 7, 3, 1, 3, 4, 1, 0, 3, 3, 2, 2, 1, 1, 0, 0, 1, 4, 2, 4, 8
Offset: 1

Views

Author

V. Raman, Oct 13 2012

Keywords

Comments

Note: For the equation a^2 + b^2 = n, if there are two solutions (a,b) and (b,a), then they will be counted separately.
The sequences A216501 and A216671 give how many of the four k values, k = 1, 2, 3, 7 does the equation a^2 + k*b^2 = n have a solution to.
1, 2, 3, 7 are the first four numbers with class number 1.
a(n) = A217462(n) when n is not the sum of two positive squares.
But when n is the sum of two positive squares, the ordered pairs for the equation x^2+y^2 = n count.
For example,
193 = 12^2 + 7^2.
193 = 7^2 + 12^2.
193 = 11^2 + 2*6^2.
193 = 1^2 + 3*8^2.
193 = 9^2 + 7*4^2.
So a(193) = 5. On the other hand, for the sequence A217462, the ordered pairs 12^2 + 7^2, 7^2 + 12^2 will be counted only once, so A217462(193) = 4.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Cf. A217462 (related sequence of this when the order does not matter for the equation a^2 + b^2 = n).
Cf. A216501 (how many of the four k values, k = 1, 2, 3, 7 does the equation a^2 + k*b^2 = n have a solution to, with a > 0, b > 0).
Cf. A216671 (how many of the four k values, k = 1, 2, 3, 7 does the equation a^2 + k*b^2 = n have a solution to, with a >= 0, b >= 0).
Cf. A000925 (number of solutions to n = a^2+b^2 (when the solutions (a, b) and (b, a) are being counted differently) with a >= 0, b >= 0).
Cf. A216282 (number of solutions to n = a^2+2*b^2 with a >= 0, b >= 0).
Cf. A119395 (number of solutions to n = a^2+3*b^2 with a >= 0, b >= 0).
Cf. A216512 (number of solutions to n = a^2+7*b^2 with a >= 0, b >= 0).

Programs

  • PARI
    for(n=1, 100, sol=0; for(x=0, 100, if(issquare(n-x*x)&&n-x*x>=0, sol++); if(issquare(n-2*x*x)&&n-2*x*x>=0, sol++); if(issquare(n-3*x*x)&&n-3*x*x>=0, sol++); if(issquare(n-7*x*x)&&n-7*x*x>=0, sol++)); printf(sol", "))

A281154 Expansion of (Sum_{k>=2} x^(k^2))^2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 2 squares > 1.

Examples

			G.f. = x^8 + 2*x^13 + x^18 + 2*x^20 + 2*x^25 + 2*x^29 + x^32 + 2*x^34 + 2*x^40 + ...
a(13) = 2 because we have [9, 4] and [4, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Sum[x^k^2, {k, 2, nmax}]^2, {x, 0, nmax}], x]
    CoefficientList[Series[(1 + 2 x - EllipticTheta[3, 0, x])^2/4, {x, 0, 105}], x]

Formula

G.f.: (Sum_{k>=2} x^(k^2))^2.
G.f.: (1/4)*(1 + 2*x - theta_3(0,x))^2, where theta_3 is the 3rd Jacobi theta function.

A305260 A linear mapping a(n) = x + y*n of pairs of nonnegative integers (x,y), where the pairs are enumerated first by radial coordinate r and in case of ties, by polar angle 0 <= phi <= Pi/2 in a polar coordinate system.

Original entry on oeis.org

0, 1, 2, 4, 2, 10, 8, 15, 18, 3, 30, 14, 37, 29, 44, 4, 64, 21, 73, 60, 44, 86, 5, 73, 99, 125, 31, 136, 61, 147, 124, 98, 163, 6, 204, 41, 217, 80, 230, 161, 204, 129, 255, 7, 308, 52, 235, 330, 198, 298, 107, 359, 163, 374, 276, 335, 8, 456, 66, 243, 424, 489, 132, 506, 390, 203, 531
Offset: 0

Views

Author

Hugo Pfoertner, Jun 15 2018

Keywords

Comments

Secondary sorting by polar angle is equivalent to secondary sorting by y.
The sequence is an alternative solution to the riddle described in the comments of A304584.

Examples

			   y:
     |
   8 |  57  61  63  66  70
     |
   7 |  44  47  51  53  60  68
     |
   6 |  34  36  38  42  49  55  64
     |
   5 |  25  27  29  32  40  46  54  67
     |
   4 |  16  18  21  24  30  39  48  59  69
     |
   3 |  10  12  14  19  23  31  41  52  65
     |
   2 |   5   7   8  13  20  28  37  50  62
     |
   1 |   2   3   6  11  17  26  35  45  58
     |
   0 |   0   1   4   9  15  22  33  43  56  71
       _______________________________________
  x:     0   1   2   3   4   5   6   7   8   9
.
a(5) = x(5) + 5*y(5) = 0 + 5*2 = 10,
a(14) = x(14) + 14*y(14) = 2 + 14*3 = 44,
a(20) = x(20) + 20*y(20) = 4 + 20*2 = 44.
		

Crossrefs

Programs

  • PARI
    n=-1;for(r2=0,81,for(y=0,round(sqrt(r2)),x2=r2-y^2;if(issquare(x2),print1(round(sqrt(x2))+y*(n++),", "))))

A363774 Expansion of 1/(Sum_{k>=0} x^(k^2))^2.

Original entry on oeis.org

1, -2, 3, -4, 3, 0, -5, 12, -18, 18, -9, -12, 44, -76, 93, -76, 5, 120, -273, 400, -414, 228, 200, -828, 1480, -1842, 1539, -268, -2004, 4824, -7168, 7568, -4518, -2784, 13577, -24900, 31563, -27236, 6816, 30308, -77010, 116844, -126018, 80180, 34140, -205932, 389275
Offset: 0

Views

Author

Seiichi Manyama, Jun 21 2023

Keywords

Crossrefs

Convolution inverse of A000925.
Column k=2 of A363778.

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/sum(k=0, sqrtint(N), x^k^2)^2)

Formula

a(0) = 1; a(n) = -(2/n) * Sum_{k=1..n} A162552(k) * a(n-k).

A214900 Number of ordered ways to represent n as the sum of three squares and one fourth power.

Original entry on oeis.org

1, 4, 6, 4, 4, 9, 9, 3, 3, 9, 12, 9, 4, 7, 12, 6, 4, 15, 18, 10, 12, 18, 12, 3, 6, 18, 27, 19, 5, 18, 24, 6, 6, 18, 21, 18, 18, 18, 18, 9, 9, 30, 33, 13, 6, 27, 24, 6, 4, 16, 33, 27, 18, 24, 33, 12, 12, 27, 18, 18, 12, 24, 30, 12, 4, 30, 45, 21, 18, 33, 30, 6, 12, 21, 33, 34, 10, 27, 30, 6, 9, 40, 39, 24, 25, 33, 39, 18, 9
Offset: 0

Views

Author

Joerg Arndt, Jul 29 2012

Keywords

Comments

Different orderings of summands are counted, e.g., 1 = 1^2 + 0^2 + 0^4 + 0^4 = 0^2 + 1^2 + 0^4 + 0^4 = 0^2 + 0^2 + 1^4 + 0^4 = 0^2 + 0^2 + 0^4 + 1^4, so a(1)=4.
Conjecture: a(n) != 0, that is, all numbers are sums of three squares and one fourth power.

Crossrefs

Cf. A000925 (two squares), A002102 (three squares).

Programs

  • PARI
    N=10^3;  x='x+O('x^N);
    S(e)=sum(j=0, ceil(N^(1/e)), x^(j^e));
    v=Vec( S(4)^1 * S(2)^3 )

Formula

G.f.: (Sum_{j>=0} x^(j^2))^3 * (Sum_{j>=0} x^(j^4)) (see PARI code).
Previous Showing 11-18 of 18 results.