cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 304 results. Next

A227834 2^a(n) is the highest power of 2 dividing A000930(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 3, 0, 3, 7, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 4, 1, 0, 0, 0, 4, 0, 4, 6, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 3, 0, 3, 6, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 2, 0, 2, 3, 0, 0, 0, 1, 0, 5, 1, 0, 0, 0, 5, 0, 5, 7, 0
Offset: 0

Views

Author

N. J. A. Sloane, Aug 04 2013

Keywords

Comments

This is the 2-adic valuation of A000930.

Crossrefs

Programs

A231621 a(n) = A000930(n*(n+1)/2), where A000930 is Narayana's cows sequence.

Original entry on oeis.org

1, 1, 2, 6, 28, 189, 1873, 27201, 578949, 18059374, 825604416, 55315679788, 5431645680297, 781666575692345, 164861247948842305, 50959194632488457965, 23085190353310504913320, 15326793132326730009566200, 14913379277290330452859885202, 21267074956884103635776195255433, 44447403127130268192387935737712641
Offset: 0

Author

Paul D. Hanna, Nov 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x - x^3), {x, 0, n*(n + 1)/2}], {n,0,50}] (* G. C. Greubel, Apr 26 2017 *)
  • PARI
    {a(n) = polcoeff(1/(1-x-x^3 + x*O(x^(n*(n+1)/2))), n*(n+1)/2)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = [x^(n*(n+1)/2)] 1 / (1 - x - x^3) for n>=0.

A274452 Products of distinct Narayana's cow numbers (A000930).

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 13, 18, 19, 24, 26, 27, 28, 36, 38, 39, 41, 48, 52, 54, 56, 57, 60, 72, 76, 78, 82, 84, 88, 104, 108, 112, 114, 117, 120, 123, 129, 144, 152, 156, 162, 164, 168, 171, 176, 180, 189, 216, 224, 228, 234, 240, 246, 247, 252, 258, 264, 277
Offset: 1

Author

Clark Kimberling, Jun 23 2016

Keywords

Examples

			The Narayana's cow numbers numbers are 1, 2, 3, 4, 6, 9, 13, 19, 28, ..., so that the sequence of all products of distinct members, in increasing order, is (2, 3, 4, 6, 8, 9, 12, 13, 18, 19, 24, ...).
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 3]
    s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20] (*A000930*)
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    Take[s, 2 z] (* A274452 *)

A170933 a(n) = A000930(n) + A000930(n+3) + 4.

Original entry on oeis.org

7, 8, 9, 12, 16, 21, 29, 41, 58, 83, 120, 174, 253, 369, 539, 788, 1153, 1688, 2472, 3621, 5305, 7773, 11390, 16691, 24460, 35846, 52533, 76989, 112831, 165360, 242345, 355172, 520528, 762869, 1118037
Offset: 0

Author

N. J. A. Sloane, Feb 10 2010

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(7 - 6*x - 5*x^3)/(1 - 2*x + x^2 - x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2017 *)
    LinearRecurrence[{2,-1,1,-1},{7,8,9,12},40] (* Harvey P. Dale, Aug 07 2021 *)
  • PARI
    x='x+O('x^50); Vec((7 - 6*x - 5*x^3)/(1 - 2*x + x^2 - x^3 + x^4)) \\ G. C. Greubel, Apr 26 2017

Formula

G.f.: (7-6*x-5*x^3)/(1-2*x+x^2-x^3+x^4). - Colin Barker, Dec 30 2011
a(n) = a(n-1) + a(n-3) - 4 for n>2. - Greg Dresden, Feb 09 2020

A170934 a(n) = b(n) + b(n+1) + 2, where b() = A000930().

Original entry on oeis.org

4, 4, 5, 7, 9, 12, 17, 24, 34, 49, 71, 103, 150, 219, 320, 468, 685, 1003, 1469, 2152, 3153, 4620, 6770, 9921, 14539, 21307, 31226, 45763, 67068, 98292, 144053, 211119, 309409, 453460, 664577, 973984, 1427442, 2092017, 3065999, 4493439, 6585454, 9651451
Offset: 0

Author

N. J. A. Sloane, Feb 10 2010

Keywords

Programs

  • Mathematica
    CoefficientList[Series[-(3*x^3 - x^2 + 4*x - 4)/((x - 1)*(x^3 + x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2017 *)
    LinearRecurrence[{2,-1,1,-1},{4,4,5,7},50] (* Harvey P. Dale, Jul 10 2020 *)
  • PARI
    x='x+O('x^50); Vec(-(3*x^3 - x^2 + 4*x - 4)/((x - 1)*(x^3 + x - 1))) \\ G. C. Greubel, Apr 26 2017

Formula

From Colin Barker, Jul 25 2013: (Start)
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-a(n-4).
G.f.: -(3*x^3-x^2+4*x-4) / ((x-1)*(x^3+x-1)). (End)
a(n) = a(n-1) + a(n-3) - 2, for n > 2. - Greg Dresden, Feb 09 2020

Extensions

More terms from Colin Barker, Jul 25 2013

A170935 b(n)*b(n+1), where b() = A000930().

Original entry on oeis.org

1, 1, 2, 6, 12, 24, 54, 117, 247, 532, 1148, 2460, 5280, 11352, 24381, 52353, 112462, 241570, 518840, 1114416, 2393694, 5141385, 11043135, 23719608, 50947336, 109429624, 235043840, 504850560, 1084367865, 2329112625, 5002699050, 10745292366, 23079802756, 49573086472
Offset: 0

Author

N. J. A. Sloane, Feb 11 2010

Keywords

Programs

  • Mathematica
    CoefficientList[Series[1/((x^3 - x^2 - 1)*(x^3 + 2*x^2 + x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2017 *)
    LinearRecurrence[{1,1,3,1,-1,-1},{1,1,2,6,12,24},40] (* Harvey P. Dale, Aug 27 2019 *)
  • PARI
    x='x+O('x^50); Vec(1/((x^3-x^2-1)*(x^3+2*x^2+x-1))) \\ G. C. Greubel, Apr 26 2017

Formula

G.f.: 1 / ((x^3-x^2-1)*(x^3+2*x^2+x-1)). - Colin Barker, Jul 25 2013

A294688 Palindromes in Narayana's cows sequence (A000930).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 88, 595
Offset: 1

Author

Chai Wah Wu, Nov 06 2017

Keywords

Comments

595 is probably the last term.

Crossrefs

Programs

  • Maple
    a := proc(n) if n < 4 then n else
    simplify(hypergeom([-n/3, (1-n)/3, (-1-n)/3], [-n/2, (-1-n)/2], -27/4));
    convert(%, base, 10); ListTools:-Reverse(%);
    if %% = % then add(%[k]*10^(k-1), k=1..nops(%)) else NULL fi fi end:
    seq(a(n), n=1..200); # Peter Luschny, Nov 07 2017

A137433 Coefficients of A000930 expansion similar to that given for Fibonacci numbers in Roman's Umbral Calculus.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 8, 3, 1, 0, 30, 35, 6, 1, 0, 144, 230, 95, 10, 1, 0, 1200, 1954, 945, 205, 15, 1, 0, 10800, 19824, 11494, 2835, 385, 21, 1, 0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1, 0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1
Offset: 1

Author

Roger L. Bagula, Apr 17 2008

Keywords

Comments

Row sums:
{1, 1, 2, 12, 72, 480, 4320, 45360, 524160, 6894720, 101606400}
Row_sum(n)/n!=A000930(n)

Examples

			{1},
{0, 1},
{0, 1, 1},
{0, 8, 3, 1},
{0, 30, 35, 6, 1},
{0, 144, 230, 95, 10, 1},
{0, 1200, 1954, 945, 205, 15, 1},
{0, 10800, 19824, 11494, 2835, 385, 21, 1},
{0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1},
{0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1},
{0, 16692480, 37802736, 31266540, 12628160, 2814525, 370713, 29610, 1590, 45, 1}
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150

Crossrefs

Programs

  • Mathematica
    Clear[p, g]; p[t_] = 1/(1 - t - t^3)^x; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

Formula

Coefficients expansion of p(x,n) in f(x,t)=1/(1-t-t^3)^x=Sum[p(x,n)*t^n/n!m{n,1,Infinity}]

A301877 Group the natural numbers into groups (1),(2),(3),(4),(5,6),(7,8,9),... so that the n-th group contains N(n) terms, where N(n) is the Narayana's cows sequence (A000930). Sequence contains the sum of the terms in the n-th group.

Original entry on oeis.org

1, 2, 3, 4, 11, 24, 46, 99, 216, 455, 969, 2086, 4469, 9570, 20548, 44118, 94689, 203318, 436653, 937720, 2013884, 4325391, 9290080, 19953405, 42857019, 92051300, 197714721, 424668244, 912140480, 1959179226, 4208109535, 9038581200, 19413940167, 41699153408, 89565528714, 192377651011, 413207678264
Offset: 1

Author

Frank M Jackson, Mar 28 2018

Keywords

Comments

a(n) is the sum of all nodes at height n-1 within a binary tree structure recursively built from the Hofstadter H-sequence (see comments for A005374).

Examples

			a(8) = 14 + 15 + 16 + 17 + 18 + 19 = (2N(8)+N(6)+1)*N(6)/2 = 99.
		

Crossrefs

Programs

  • Mathematica
    Narayana[n_] := Which[n==0, 1, n==1, 1, n==2, 1, True, Narayana[n]=Narayana[n-3] + Narayana[n-1]]; a[n_] := If[n==1, 1, (2 Narayana[n]+Narayana[n-2]+1)Narayana[n-2]/2]; Array[a, 50]

Formula

a(1) = 1 and for n > 1, a(n) = (2N(n)+N(n-2)+1)*N(n-2)/2, where N(n) is the Narayana's cows sequence (A000930).
Conjectures from Colin Barker, Mar 28 2018: (Start)
G.f.: x*(1 - x)*(1 + x - 5*x^3 - 5*x^4 - 3*x^5 + x^6 + 2*x^7 + x^8) / ((1 + x^2 - x^3)*(1 - x - x^3)*(1 - x - 2*x^2 - x^3)).
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 6*a(n-4) - 6*a(n-5) + 5*a(n-6) - a(n-7) for n>10.
(End)

A368396 Prime numbers in Narayana's cows sequence A000930.

Original entry on oeis.org

2, 3, 13, 19, 41, 277, 1873, 8641, 17098272199297
Offset: 1

Author

José E. Solsona, Dec 22 2023

Keywords

Comments

The next terms are too large to show here: a(10) and a(11) have 1036 and 4274 digits, respectively (see A170954). - Jon E. Schoenfield, Dec 29 2023

Crossrefs

Primes in A000930.

Programs

  • Mathematica
    a[0] = 1; a[1] = a[2] = 1; a[n_] := a[n] = a[n-1] + a[n-3]; Select[Table[a[n],  {n, 0, 400}], PrimeQ]

Formula

a(n) = A000930(A170954(n)).
A000040 INTERSECT A000930.
Previous Showing 11-20 of 304 results. Next