cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A127955 Composite numbers of the form (2^p+1)/3 where p is a prime.

Original entry on oeis.org

178956971, 45812984491, 733007751851, 46912496118443, 3002399751580331, 192153584101141163, 49191317529892137643, 787061080478274202283, 3148244321913096809131, 3223802185639011132549803
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

If p-1 is squarefree, the terms are overpseudoprimes (see A141232). - Vladimir Shevelev, Jul 15 2008

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, c]], {x, 2, 30}]; a
    Select[(2^Prime[Range[2,30]]+1)/3,CompositeQ] (* Harvey P. Dale, Feb 04 2015 *)

A127957 Numbers k such that (2^prime(k) + 1)/3 is composite.

Original entry on oeis.org

10, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, x]], {x, 2, 300}]; a
    Select[Range[2,100],!PrimeQ[(2^Prime[#]+1)/3]&] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    isok(n) = (n!=1) && !isprime((2^prime(n)+1)/3); \\ Michel Marcus, Jul 07 2018

A127956 Prime numbers p such that (2^p+1)/3 is composite.

Original entry on oeis.org

29, 37, 41, 47, 53, 59, 67, 71, 73, 83, 89, 97, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 317, 331, 337, 349, 353, 359, 367, 373
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

If p-1 is squarefree, 2a(n) is the multiplicative order of 2 modulo every divisor d>1 of (2^p+1)/3. - Vladimir Shevelev, Jul 15 2008

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, Prime[x]]], {x, 2, 100}]; a
    Select[Prime[Range[2,100]],CompositeQ[(2^#+1)/3]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 07 2021 *)

A127958 Numbers x such that 1 + Sum_{k=1..n} 2^(2k-1) is not prime for n=1,2,...,x.

Original entry on oeis.org

4, 7, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Numbers x such that 1 + Sum_{k=1..n} 2^(2k-1) is prime for n=1,2,...,x gives A127936.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + Sum[2^(2n - 1), {n, 1, x}]] == False, AppendTo[a, x]], {x, 1, 1000}]; a
  • PARI
    isok(x) = !isprime(1+sum(k=1, x, 2^(2*k-1))); \\ Michel Marcus, May 09 2018

A049883 Primes in the Jacobsthal sequence (A001045).

Original entry on oeis.org

3, 5, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243
Offset: 1

Views

Author

Keywords

Comments

All terms, except a(2) = 5, are of the form (2^p + 1)/3 - the Wagstaff primes A000979 = {3, 11, 43, 683, 2731, 43691, 174763, ...}.
Indices of prime Jacobsthal numbers are listed in A107036 = {3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, ...}.
For n > 1, A107036(n) = A000978(n) (numbers m such that (2^m + 1)/3 is prime). - Alexander Adamchuk, Oct 10 2006

Crossrefs

Programs

A123627 Smallest prime q such that (q^p+1)/(q+1) is prime, where p = prime(n); or 0 if no such prime q exists.

Original entry on oeis.org

0, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 19, 61, 2, 7, 839, 89, 2, 5, 409, 571, 2, 809, 227, 317, 2, 5, 79, 23, 4073, 2, 281, 89, 739, 1427, 727, 19, 19, 2, 281, 11, 2143, 2, 1013, 4259, 2, 661, 1879, 401, 5, 4099, 1579, 137, 43, 487, 307, 547, 1709, 43, 3, 463, 2161, 353, 443, 2
Offset: 1

Views

Author

Alexander Adamchuk, Oct 04 2006, Aug 05 2008

Keywords

Comments

a(1) = 0 because such a prime does not exist, Mod[n^2+1,n+1] = 2 for n>1.
Corresponding primes (q^p+1)/(q+1), where prime q = a(n) and p = Prime[n], are listed in A123628[n] = {1,3,11,43,683,2731,43691,174763,2796203,402488219476647465854701,715827883,...}.
a(n) coincides with A103795[n] when A103795[n] is prime.
a(n) = 2 for n = PrimePi[A000978[k]] = {2,3,4,5,6,7,8,9,11,14,18,22,26,31,39,43,46,65,69,126,267,380,495,762,1285,1304,1364,1479,1697,4469,8135,9193,11065,11902,12923,13103,23396,23642,31850,...}.
Corresponding primes of the form (2^p + 1)/3 are the Wagstaff primes that are listed in A000979[n] = {3,11,43,683,2731,43691,174763,2796203,715827883,...}.

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,q;
      p:= ithprime(n);
      q:= 1;
      do
       q:= nextprime(q);
       if isprime((q^p+1)/(q+1)) then return q fi
      od
    end proc:
    f(1):= 0:
    map(f, [$1..70]); # Robert Israel, Jul 31 2019
  • Mathematica
    a(1) = 0, for n>1 Do[p=Prime[k]; n=1; q=Prime[n]; cp=(q^p+1)/(q+1); While[ !PrimeQ[cp], n=n+1; q=Prime[n]; cp=(q^p+1)/(q+1)]; Print[q], {k, 2, 61}]
    Do[p=Prime[k]; n=1; q=Prime[n]; cp=(q^p+1)/(q+1); While[ !PrimeQ[cp], n=n+1; q=Prime[n]; cp=(q^p+1)/(q+1)]; Print[{k,q}], {k, 1, 134}]
    spq[n_]:=Module[{p=Prime[n],q=2},While[!PrimeQ[(q^p+1)/(q+1)],q=NextPrime[ q]]; q]; Join[{0},Array[spq,70,2]] (* Harvey P. Dale, Mar 23 2019 *)

Formula

A123628(n) = (a(n)^prime(n) + 1) / (a(n) + 1).

A123628 Smallest prime of the form (q^p+1)/(q+1), where p = prime(n) and q is also prime (q = A123627(n)); or 1 if such a prime does not exist.

Original entry on oeis.org

1, 3, 11, 43, 683, 2731, 43691, 174763, 2796203, 402488219476647465854701, 715827883, 10300379826060720504760427912621791994517454717, 254760179343040585394724919772965278539769280548173566545431025735121201
Offset: 1

Views

Author

Alexander Adamchuk, Oct 03 2006

Keywords

Comments

a(1) = 1 because such a prime does not exist; (n^2+1) mod (n+1) = 2 for n > 1. a(n) = (A103795(n)^prime(n)+1)/(A103795(n)+1) when A103795(n) is prime. Corresponding smallest primes q such that (q^p+1)/(q+1) is prime, where p = prime(n), are listed in A123627(n) = {0, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 19, 61, 2, 7, 839, 1459, 2, 5, 409, 571, 2, ...}. All Wagstaff primes or primes of form (2^p + 1)/3 belong to a(n). Wagstaff primes are listed in A000979(n) = {3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, ...}. Corresponding indices n such that a(n) = (2^prime(n) + 1)/3 are PrimePi(A000978(n)) = {2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 22, 26, 31, 39, 43, 46, 65, 69, 126, 267, 380, 495, 762, 1285, 1304, 1364, 1479, 1697, 4469, 8135, 9193, 11065, 11902, 12923, 13103, 23396, 23642, 31850, ...}. All primes with prime indices in the Jacobsthal sequence A001045(n) belong to a(n).

Crossrefs

Formula

a(n) = (A123627(n)^prime(n) + 1) / (A123627(n) + 1).

A127963 Number of 1's in A127962(n).

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 10, 12, 16, 22, 31, 40, 51, 64, 84, 96, 100, 157, 174, 351, 855, 1309, 1770, 2904, 5251, 5346, 5640, 6196, 7240, 21369, 41670, 47685, 58620, 63516, 69469, 70540, 133509, 134994, 187161, 493096, 2015700
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d (* Artur Jasinski, Feb 09 2007 *)
    DigitCount[#, 2, 1]& /@ Select[Table[(2^p + 1)/3, {p, Prime[Range[300]]}], PrimeQ] (* Amiram Eldar, Jul 23 2023 *)

Formula

a(n) = A000120(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = A007953(A127962(n)). - Amiram Eldar, Jul 23 2023

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Jul 23 2023

A127964 Number of 0's in the binary expansion of A127962(n).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 29, 38, 49, 62, 82, 94, 98, 155, 172, 349, 853, 1307, 1768, 2902, 5249, 5344, 5638, 6194, 7238, 21367, 41668, 47683, 58618, 63514, 69467, 70538, 133507, 134992, 187159, 493094, 2015698
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Apparently numbers k such that (2^(2*k+3)+1)/3 is prime. - James R. Buddenhagen, Apr 14 2011 [This is true. See the second formula. - Amiram Eldar, Oct 13 2024]

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]], {x, 1, Length[a]}]; d
    (Select[Prime[Range[200]], PrimeQ[(2^# + 1)/3] &] - 3)/2 (* Amiram Eldar, Oct 13 2024 *)

Formula

a(n) = A023416(A000979(n)). - Michel Marcus, Nov 07 2013
a(n) = (A000978(n)-3)/2. - Amiram Eldar, Oct 13 2024

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 31 2012
a(30)-a(41) from Amiram Eldar, Oct 13 2024

A127965 Number of bits in A127962(n).

Original entry on oeis.org

2, 4, 6, 10, 12, 16, 18, 22, 30, 42, 60, 78, 100, 126, 166, 190, 198, 312, 346, 700, 1708, 2616, 3538, 5806, 10500, 10690, 11278, 12390, 14478, 42736, 83338, 95368, 117238, 127030, 138936, 141078, 267016, 269986, 374320, 986190, 4031398
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    b = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], AppendTo[b, c]], {x, 0, 1000}]; a = {}; Do[AppendTo[a, FromDigits[IntegerDigits[b[[x]], 2]]], {x, 1, Length[b]}]; d = {}; Do[AppendTo[d, DigitCount[a[[x]], 10, 0]+DigitCount[a[[x]], 10, 1]], {x, 1, Length[a]}]; d

Formula

a(n) = A127964(n) + A127963(n).
a(n) = 1 + floor(log_2(A000979(n))) = 1 + floor(log_2(2^A000978(n)+1) - A020857) = A000978(n) - 1. - R. J. Mathar, Feb 01 2008

Extensions

a(22)-a(29) from Vincenzo Librandi, Mar 30 2012
a(30)-a(41) from Amiram Eldar, Oct 19 2024
Previous Showing 11-20 of 28 results. Next