cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A123176 Numbers n such that (2^p + 1)/3 is prime, where p is the n-th prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 22, 26, 31, 39, 43, 46, 65, 69, 126, 267, 380, 495, 762, 1285, 1304, 1364, 1479, 1697, 4469, 8135, 9193, 11065, 11902, 12923, 13103, 23396, 23642, 31850, 77509, 285228
Offset: 1

Views

Author

Alexander Adamchuk, Oct 03 2006

Keywords

Comments

Also prime(a(n)) are the indices of prime Jacobsthal numbers (A001045) with prime indices. Primes in the Jacobsthal sequence are listed in A049883.

Crossrefs

Programs

  • Mathematica
    Select[Range[500],PrimeQ[(2^Prime[#]+1)/3]&] (* The program generates the first 23 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Mar 09 2022 *)

Formula

a(n) = A000720( A000978(n) ).

Extensions

Two more terms computed from A000978 by Max Alekseyev, Mar 03 2010

A123214 Primes q such that (2^p + 1)/3 is prime, where p = Prime[q]; or primes in A123176[n].

Original entry on oeis.org

2, 3, 5, 7, 11, 31, 43, 1697, 12923, 13103, 77509
Offset: 1

Views

Author

Alexander Adamchuk, Oct 05 2006

Keywords

Comments

A123176[n] are the numbers n such that (2^p + 1)/3 is prime, where p = Prime[n]. A123176[n] = PrimePi[A000978[n]]. PrimePi[a(n)] = {1,2,3,4,5,11,14,265,1540,1559,...}.

Examples

			A123176[n] begin {2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 22, 26, 31, 39, 43, ...}.
Thus
a(1) = 2, a(2) = 3, a(3) = 5, a(4) = 7, a(5) = 11, a(6) = 31, a(7) = 43.
		

Crossrefs

Extensions

One more term from Max Alekseyev, Feb 06 2010

A246758 Prime numbers of the form (2^(m*n)-1)/((2^m-1)*(2^n-1)).

Original entry on oeis.org

3, 11, 43, 151, 683, 2731, 43691, 174763, 599479, 2796203, 715827883, 2932031007403, 10052678938039, 145295143558111, 581283643249112959, 658812288653553079, 768614336404564651, 9520972806333758431, 201487636602438195784363
Offset: 1

Views

Author

Nico Brown, Sep 02 2014

Keywords

Comments

The sequence contains A000979 as a subsequence.
Both m and n must be prime.

Examples

			For m=3 and n=5, (2^15-1)/((2^3-1)(2^5-1))=151 is prime, so 151 is a member of the sequence.
		

Crossrefs

Primes in A140803.

Programs

  • Maple
    N:= 200: # to use all (p, q) with p*q < N
    Primes:= select(isprime, [$2..floor(N/2)]):
    A:= {}:
    for i from 1 to nops(Primes) do
      p:= Primes[i];
      Qs:= select(q -> q < N/p, [seq(Primes[j], j=1..i-1)]);
      A:= A union {seq((2^(p*q)-1)/(2^p-1)/(2^q-1), q=Qs)};
    od:
    # in Maple 12 and up
    select(isprime, A);
    # or in earlier Maple versions
    sort([select(isprime, , A); # _)[]])[];
    # Robert Israel, Sep 02 2014

A302333 Wagstaff primes related to The New Mersenne Conjecture that are the indices of perfect numbers in a list of centered 9-gonal numbers.

Original entry on oeis.org

3, 11, 43, 2731, 43691, 174763, 715827883, 768614336404564651, 56713727820156410577229101238628035243
Offset: 1

Views

Author

Steve Homewood, Apr 05 2018

Keywords

Comments

Let p be a Wagstaff prime related to The New Mersenne Conjecture. Then (3p-2)(3p-1)/2 gives the perfect number whose index it is.

Examples

			For p = 3, (3*3-2)*(3*3-1)/2 = 28 and for p = 11, (3*11-2)(3*11-1)/2 = 496.
		

Crossrefs

A127959 Nonprime numbers of the form 1 + Sum_{k=1..m} 2^(2*k - 1).

Original entry on oeis.org

171, 10923, 699051, 11184811, 44739243, 178956971, 2863311531, 11453246123, 45812984491, 183251937963, 733007751851, 11728124029611, 46912496118443, 187649984473771, 750599937895083, 3002399751580331, 12009599006321323
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

Prime numbers of the form 1 + Sum_{k=1..m} 2^(2*n - 1) is A000979. Numbers x such that 1 + Sum_{k=1..m} 2^(2*n - 1) is prime for n=1,2,...,x is A127936. A127955 is probably a subset of the present sequence.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c] == False, AppendTo[a, c]], {x, 1, 50}]; a
    Select[Table[Sum[2^(2k-1),{k,n}]+1,{n,50}],!PrimeQ[#]&] (* Harvey P. Dale, Dec 23 2017 *)

A185156 Primes with the property that complementing any two different bits in the binary representation of these primes never produces a prime number.

Original entry on oeis.org

2, 3, 2731, 174763, 715827883, 1464948053
Offset: 1

Views

Author

Terentyev Oleg, Dec 22 2011

Keywords

Comments

Also called weakly primes of 2nd order in base 2.
Formal definition: let P = set of prime numbers, XOR(x,y) = bitwise x xor y, set of witnesses for an integer x>1 w(x) := Union_{1<=k<=floor(log_2(x)), 0<=j
There are only 6 terms < 10^11 (exhaustive search). But several larger terms of a special form are known (Wagstaff primes, A000979). The smallest of them are:
a(6+)=2932031007403,
a(7+)=768614336404564651,
a(8+)=201487636602438195784363. - Terentyev Oleg

Examples

			a(3)=2731 is in the sequence because it is prime and all its witnesses are composite numbers :
2731  =  101010101011 ->       10101011  =     171  =  3^2 * 19
                             1000101011  =     555  =  3 * 5 * 37
                             1010001011  =     651  =  3 * 7 * 31
                             1010100011  =     675  =  3^3 * 5^2
                             1010101001  =     681  =  3 * 227
                             1010101010  =     682  =  2 * 11 * 31
                             1010101111  =     687  =  3 * 229
                             1010111011  =     699  =  3 * 233
                             1011101011  =     747  =  3^2 * 83
                             1110101011  =     939  =  3 * 313
                            11010101011  =    1707  =  3 * 569
                           100000101011  =    2091  =  3 * 17 * 41
                           100010001011  =    2187  =  3^7
                           100010100011  =    2211  =  3 * 11 * 67
                           100010101001  =    2217  =  3 * 739
                           100010101010  =    2218  =  2 * 1109
                           100010101111  =    2223  =  3^2 * 13 * 19
                           100010111011  =    2235  =  3 * 5 * 149
                           100011101011  =    2283  =  3 * 761
                           100110101011  =    2475  =  3^2 * 5^2 * 11
                           101000001011  =    2571  =  3 * 857
                           101000100011  =    2595  =  3 * 5 * 173
                           101000101001  =    2601  =  3^2 * 17^2
                           101000101010  =    2602  =  2 * 1301
                           101000101111  =    2607  =  3 * 11 * 79
                           101000111011  =    2619  =  3^3 * 97
                           101001101011  =    2667  =  3 * 7 * 127
                           101010000011  =    2691  =  3^2 * 13 * 23
                           101010001001  =    2697  =  3 * 29 * 31
                           101010001010  =    2698  =  2 * 19 * 71
                           101010001111  =    2703  =  3 * 17 * 53
                           101010011011  =    2715  =  3 * 5 * 181
                           101010100001  =    2721  =  3 * 907
                           101010100010  =    2722  =  2 * 1361
                           101010100111  =    2727  =  3^3 * 101
                           101010101000  =    2728  =  2^3 * 11 * 31
                           101010101101  =    2733  =  3 * 911
                           101010101110  =    2734  =  2 * 1367
                           101010110011  =    2739  =  3 * 11 * 83
                           101010111001  =    2745  =  3^2 * 5 * 61
                           101010111010  =    2746  =  2 * 1373
                           101010111111  =    2751  =  3 * 7 * 131
                           101011001011  =    2763  =  3^2 * 307
                           101011100011  =    2787  =  3 * 929
                           101011101001  =    2793  =  3 * 7^2 * 19
                           101011101010  =    2794  =  2 * 11 * 127
                           101011101111  =    2799  =  3^2 * 311
                           101011111011  =    2811  =  3 * 937
                           101100101011  =    2859  =  3 * 953
                           101110001011  =    2955  =  3 * 5 * 197
                           101110100011  =    2979  =  3^2 * 331
                           101110101001  =    2985  =  3 * 5 * 199
                           101110101010  =    2986  =  2 * 1493
                           101110101111  =    2991  =  3 * 997
                           101110111011  =    3003  =  3 * 7 * 11 * 13
                           101111101011  =    3051  =  3^3 * 113
                           110010101011  =    3243  =  3 * 23 * 47
                           111000101011  =    3627  =  3^2 * 13 * 31
                           111010001011  =    3723  =  3 * 17 * 73
                           111010100011  =    3747  =  3 * 1249
                           111010101001  =    3753  =  3^3 * 139
                           111010101010  =    3754  =  2 * 1877
                           111010101111  =    3759  =  3 * 7 * 179
                           111010111011  =    3771  =  3^2 * 419
                           111011101011  =    3819  =  3 * 19 * 67
                           111110101011  =    4011  =  3 * 7 * 191
		

Programs

  • Mathematica
    isWPof2ndOrderBase2[x_] := Module[{j = 1, k = 2, flag = x <= 3 || ! BitAnd[x - 3, x - 4] == 0, bitlen = BitLength@x}, While[flag && k < bitlen, While[flag && j < k, flag = !PrimeQ@BitXor[x, BitShiftLeft[1, j] + BitShiftLeft[1, k]]; j++]; j = 1; k++]; flag]; Select[Prime[Range[20000]], isWPof2ndOrderBase2]

A243979 Indices of Wagstaff primes.

Original entry on oeis.org

2, 5, 14, 124, 399, 4552, 15898, 203095, 37029521, 105973558438, 19140185454656173, 3827634977577891833517
Offset: 1

Author

Omar E. Pol, Jun 18 2014

Keywords

Examples

			For n = 3 the third Wagstaff prime is A000979(3) = 43 and 43 is also the 14th prime number, so a(3) = 14.
		

Programs

  • PARI
    default(primelimit, 10^9); forprime(p=3, 31, q=(2^p+1)/3; if(isprime(q), print1(primepi(q)", "))) \\ Jens Kruse Andersen, Jun 22 2014

Formula

a(n) = A000720(A000979(n)).
A000040(a(n)) = A000979(n).

Extensions

a(11) from Jens Kruse Andersen, Jun 22 2014
a(12) calculated using Kim Walisch's primecount and added by Amiram Eldar, Sep 05 2024

A360475 Smallest prime factor of (2^prime(n) + 1) / 3.

Original entry on oeis.org

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 59, 715827883, 1777, 83, 2932031007403, 283, 107, 2833, 768614336404564651, 7327657, 56409643, 1753, 201487636602438195784363, 499, 179, 971, 845100400152152934331135470251, 415141630193, 643, 104124649, 227
Offset: 2

Author

Alain Rocchelli, Feb 08 2023

Keywords

Comments

If (2^prime(n) + 1) / 3 is prime then a(n) is a Wagstaff prime (cf. A000979).
For n > 2, a(n) is congruent to 1 (mod 2*prime(n)).

Examples

			a(2)=3 since for prime(2)=3, (2^3+1)/3 = 3;
a(3)=11 since for prime(3)=5, (2^5+1)/3 = 11;
a(10)=59 since for prime(10)=29, (2^29+1)/3 = 59*3033169.
		

Crossrefs

Programs

  • Maple
    a:= n-> min(numtheory[factorset]((2^ithprime(n)+1)/3)):
    seq(a(n), n=2..30);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    a[n_] := FactorInteger[(2^Prime[n]+1)/3][[1, 1]];
    Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jan 27 2025 *)
  • PARI
    forprime(p=3, 100, An=(2^p+1)/3; if(isprime(An), print1(An,", "), forprime(div=3, 2^((p-1)/2), if(An%div==0, print1(div,", "); next(2)))))

Formula

a(n) = A020639(A126614(n)).

Extensions

a(26)-a(30) from Amiram Eldar, Feb 08 2023
Previous Showing 21-28 of 28 results.