A250320 T(n,k)=Number of length n+2 0..k arrays with the sum of second differences squared multiplied by some arrangement of +-1 equal to zero.
2, 5, 8, 8, 25, 8, 13, 60, 41, 24, 18, 117, 104, 161, 42, 25, 200, 233, 652, 487, 104, 32, 321, 436, 1773, 2432, 1689, 212, 41, 480, 745, 3916, 8767, 12820, 5849, 464, 50, 681, 1152, 7969, 24126, 57833, 61092, 19981, 950, 61, 940, 1733, 14452, 57305, 197848
Offset: 1
Examples
Some solutions for n=5 k=4 ..2....2....4....4....0....3....1....4....2....1....4....0....4....4....2....2 ..3....3....3....4....2....4....0....3....4....1....2....0....0....4....2....1 ..2....0....3....1....0....0....2....0....3....0....2....2....2....3....2....1 ..1....4....0....0....1....4....4....1....4....1....0....4....1....4....1....0 ..4....1....1....0....3....0....2....0....3....0....2....0....3....0....3....4 ..3....2....0....2....4....1....4....1....2....2....3....0....2....2....3....2 ..4....3....1....0....2....2....3....4....4....4....1....4....4....0....1....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..127
Crossrefs
Row 1 is A000982(n+1)
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -6*a(n-3) +3*a(n-4) +3*a(n-5) -2*a(n-6)
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3
Comments