cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 112 results. Next

A250320 T(n,k)=Number of length n+2 0..k arrays with the sum of second differences squared multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 5, 8, 8, 25, 8, 13, 60, 41, 24, 18, 117, 104, 161, 42, 25, 200, 233, 652, 487, 104, 32, 321, 436, 1773, 2432, 1689, 212, 41, 480, 745, 3916, 8767, 12820, 5849, 464, 50, 681, 1152, 7969, 24126, 57833, 61092, 19981, 950, 61, 940, 1733, 14452, 57305, 197848
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2014

Keywords

Comments

Table starts
....2......5.......8.......13........18.........25.........32........41
....8.....25......60......117.......200........321........480.......681
....8.....41.....104......233.......436........745.......1152......1733
...24....161.....652.....1773......3916.......7969......14452.....24293
...42....487....2432.....8767.....24126......57305.....119004....228401
..104...1689...12820....57833....197848.....558541....1357424...2953265
..212...5849...61092...363457...1559080....5237161...14866258..37065983
..464..19981..300616..2317841..12424332...50020061..166783380.476368553
..950..67459.1423966.14305925..95711098..461868677.1809575752
.1968.221953.6523576.85334033.709795516.4110975765

Examples

			Some solutions for n=5 k=4
..2....2....4....4....0....3....1....4....2....1....4....0....4....4....2....2
..3....3....3....4....2....4....0....3....4....1....2....0....0....4....2....1
..2....0....3....1....0....0....2....0....3....0....2....2....2....3....2....1
..1....4....0....0....1....4....4....1....4....1....0....4....1....4....1....0
..4....1....1....0....3....0....2....0....3....0....2....0....3....0....3....4
..3....2....0....2....4....1....4....1....2....2....3....0....2....2....3....2
..4....3....1....0....2....2....3....4....4....4....1....4....4....0....1....3
		

Crossrefs

Row 1 is A000982(n+1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -6*a(n-3) +3*a(n-4) +3*a(n-5) -2*a(n-6)
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3

A008812 Expansion of (1+x^5)/((1-x)^2*(1-x^5)).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 25, 30, 35, 40, 45, 52, 59, 66, 73, 80, 89, 98, 107, 116, 125, 136, 147, 158, 169, 180, 193, 206, 219, 232, 245, 260, 275, 290, 305, 320, 337, 354, 371, 388, 405, 424, 443, 462, 481, 500, 521, 542, 563, 584, 605, 628, 651, 674
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n arrays of six elements with zero second differences. - R. H. Hardin, Nov 16 2011
Also number of ordered triples (w,x,y) with all terms in {1,...,n+1} and w + 4*x = 5*y. Also the number of 3-tuples (w,x,y) with all terms in {1,...,n+1} and 5*w = 2*x +3*y. - Clark Kimberling, Apr 15 2012 [Corrected by Pontus von Brömssen, Jan 26 2020]
a(n) is also the number of 5 boxes polyomino (zig-zag patterns) packing into (n+3) X (n+3) square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013
Also, number of ordered pairs (x,y) with both terms in {1,...,n+1} and x+4*y divisible by 5; or number of ordered pairs (x,y) with both terms in {1,...,n+1} and 2*x+3*y divisible by 5. - Pontus von Brömssen, Jan 26 2020

Examples

			For n = 5 there are 8 0..5 arrays of six elements with zero second differences: [0,0,0,0,0,0], [0,1,2,3,4,5], [1,1,1,1,1,1], [2,2,2,2,2,2], [3,3,3,3,3,3], [4,4,4,4,4,4], [5,4,3,2,1,0], [5,5,5,5,5,5].
		

Crossrefs

Cf. A130497 (first differences).
Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), this sequence (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,8,11];; for n in [8..65] do a[n]:=2*a[n-1]-a[n-2] +a[n-5]-2*a[n-6]+a[n-7]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^5)/((1-x)^2*(1-x^5)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^5)/((1-x)^2*(1-x^5)), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^5)/(1-x)^2/(1-x^5),{x,0,65}],x] (* or *) LinearRecurrence[{2,-1,0,0,1,-2,1}, {1,2,3,4,5,8,11}, 65] (* Harvey P. Dale, Apr 17 2015 *)
  • PARI
    Vec((1+x^5)/(1-x)^2/(1-x^5)+O(x^65)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • Sage
    def A008812_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^5)/((1-x)^2*(1-x^5))).list()
    A008812_list(65) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^5)/((1-x)^2*(1-x^5)).
a(n) = 2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A208825 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 5, 5, 1, 5, 8, 16, 7, 1, 6, 13, 38, 45, 18, 1, 7, 18, 75, 155, 167, 32, 1, 8, 25, 131, 415, 828, 609, 84, 1, 9, 32, 210, 905, 2821, 4390, 2471, 185, 1, 10, 41, 316, 1755, 7582, 19657, 25202, 10143, 486, 1, 11, 50, 453, 3085, 17339, 65134, 144871
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Table starts
..1....1.....1......1......1.......1.......1........1........1........1
..2....3.....4......5......6.......7.......8........9.......10.......11
..2....5.....8.....13.....18......25......32.......41.......50.......61
..5...16....38.....75....131.....210.....316......453......625......836
..7...45...155....415....905....1755....3085.....5077.....7891....11761
.18..167...828...2821...7582...17339...35288....65769...114442...188463
.32..609..4390..19657..65134..177097..417204...883409..1720628..3135633
.84.2471.25202.144871.587682.1888153.5134796.12322101.26828152.54037203

Examples

			All solutions for n=3, k=3:
.-2....0...-1...-1...-3...-2...-3...-2
.-1....0...-1....0....1....1....0....0
..3....0....2....1....2....1....3....2
		

Crossrefs

Row 3 is A000982(n+1).
Row 4 is A174723(n+1).

Formula

Empirical for row n:
n=2: a(k) = k + 1.
n=3: a(k) = 2*a(k-1) - 2*a(k-3) + a(k-4).
n=4: a(k) = (2/3)*k^3 + (3/2)*k^2 + (11/6)*k + 1.
n=5: a(k) = 3*a(k-1) - a(k-2) - 5*a(k-3) + 5*a(k-4) + a(k-5) - 3*a(k-6) + a(k-7).
n=6: a(k) = (22/15)*k^5 + (11/3)*k^4 + (14/3)*k^3 + (13/3)*k^2 + (43/15)*k + 1.
n=7: a(k) = 4*a(k-1) - 3*a(k-2) - 8*a(k-3) + 14*a(k-4) - 14*a(k-6) + 8*a(k-7) + 3*a(k-8) - 4*a(k-9) + a(k-10).

A208970 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero and first and second differences in -k..k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 4, 3, 2, 1, 2, 2, 8, 9, 8, 2, 1, 2, 5, 11, 19, 29, 15, 4, 1, 3, 5, 18, 40, 90, 87, 42, 4, 1, 3, 5, 24, 77, 221, 371, 325, 94, 7, 1, 3, 8, 35, 130, 495, 1185, 1755, 1148, 246, 7, 1, 3, 8, 45, 213, 967, 3186, 6883, 8092, 4168, 613, 14, 1
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Table starts
.1..1...1....1....1.....1.....1......1......1......1.......1.......1......1
.1..1...1....2....2.....2.....2......3......3......3.......3.......4......4
.1..1...2....2....2.....5.....5......5......8......8.......8......13.....13
.1..3...4....8...11....18....24.....35.....45.....61......76......98....119
.1..3...9...19...40....77...130....213....325....484.....687.....956...1294
.2..8..29...90..221...495...967...1801...3093...5050....7921...11994..17488
.2.15..87..371.1185..3186..7425..15658..30368..55222...95087..156612.248194
.4.42.325.1755.6883.21830.58791.140429.304536.612054.1154448.2066531

Examples

			Some solutions for n=5, k=5:
.-2...-2...-1...-3...-2...-1...-2...-2...-2...-1...-2...-1...-3...-1...-2...-2
.-2...-1....0...-2...-1...-1...-1....0....0....0....0....0...-1....0....0...-2
..0....1....1....2....2....0....2...-1....2...-1....1....0....2....0....0...-1
..2....2...-1....2....1....2....0....2...-1....0....1....0....3....1....2....3
..2....0....1....1....0....0....1....1....1....2....0....1...-1....0....0....2
		

Crossrefs

Row 2 is A002265(n+4).
Row 3 is A000982(floor(n/3)+1).

Formula

Empirical for row n:
n=2: a(k) = a(k-1) + a(k-4) - a(k-5).
n=3: a(k) = a(k-1) + a(k-3) - a(k-4) + a(k-6) - a(k-7) - a(k-9) + a(k-10).
n=4: a(k) = 2*a(k-1) + a(k-2) - 4*a(k-3) + a(k-4) + 2*a(k-5) - a(k-6).

A250561 T(n,k)=Number of length n+2 0..k arrays with the sum of second differences multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 5, 8, 8, 25, 14, 13, 60, 83, 32, 18, 117, 302, 297, 62, 25, 200, 761, 1516, 989, 128, 32, 321, 1648, 5105, 7126, 3113, 254, 41, 480, 3125, 13732, 31525, 30780, 9611, 512, 50, 681, 5446, 31173, 106362, 177421, 127586, 29257, 1022, 61, 940, 8843, 63400, 290909
Offset: 1

Views

Author

R. H. Hardin, Nov 25 2014

Keywords

Comments

Table starts
....2......5.......8........13.........18.........25..........32...........41
....8.....25......60.......117........200........321.........480..........681
...14.....83.....302.......761.......1648.......3125........5446.........8843
...32....297....1516......5105......13732......31173.......63400.......117749
...62....989....7126.....31525.....106362.....290909......695890......1486139
..128...3113...30780....177421.....744564....2457921.....6924692.....17094253
..254...9611..127586....937817....4808120...18934449....62245658....176612641
..512..29257..518052...4803653...29723864..137976845...522997696...1688068993
.1022..88503.2085808..24257725..180290280..980389815..4258085394..15526286669
.2048.266769.8367220.121800949.1085927844.6899647449.34261234132.140731044189

Examples

			Some solutions for n=5 k=4
..0....0....1....4....4....3....4....0....3....0....1....1....1....3....0....3
..1....2....2....0....0....0....4....1....2....4....0....1....2....0....0....3
..3....2....0....3....3....0....1....3....4....4....0....2....2....1....2....1
..3....3....2....4....0....3....2....3....3....3....4....2....0....0....4....0
..1....1....1....1....1....3....4....3....0....1....3....2....2....1....0....1
..3....0....2....1....4....4....4....4....0....1....3....1....0....3....2....4
..4....0....1....3....0....1....2....1....1....3....2....3....1....4....2....0
		

Crossrefs

Row 1 is A000982(n+1)
Row 2 is A250321

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: [order 10] for n>15
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=2: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8); also a cubic polynomial plus a linear quasipolynomial with period 3
n=3: [order 21; also a quartic polynomial plus a linear quasipolynomial with period 60]

A008811 Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576, 601, 626, 651, 676, 703, 730, 757, 784, 813
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011

Crossrefs

Cf. A129756 (first differences).
Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), this sequence (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[0,1,2,3,4,7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    f := n->n^2/4+3*n/2+g(n);
    g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi;
    seq(f(n), n=-3..50);
  • Mathematica
    CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x,0,60}], x] (* G. C. Greubel, Sep 12 2019 *)
  • PARI
    concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008811_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list()
    A008811_list(60) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011
a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/2)*Pi/4 + tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Aug 25 2022
a(n) = 2*floor((n^2 + 4)/8) + (n mod 2). - Ridouane Oudra, Sep 08 2023

A214540 T(n,k)=Number of nXnXn triangular 0..k arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors, and every horizontal row having the same average value.

Original entry on oeis.org

2, 3, 2, 4, 5, 2, 5, 8, 15, 2, 6, 13, 38, 93, 2, 7, 18, 79, 344, 1007, 2, 8, 25, 152, 1181, 5360, 17213, 2, 9, 32, 263, 3198, 35567, 141470, 461465, 2, 10, 41, 418, 7801, 155102, 2280331, 6042900, 19166997, 2, 11, 50, 643, 16752, 562559, 15986168, 292689331
Offset: 1

Views

Author

R. H. Hardin Jul 20 2012

Keywords

Comments

Table starts
.2....3....4.....5......6......7.......8.......9.......10.....11...12.13.14
.2....5....8....13.....18.....25......32......41.......50.....61...72.85
.2...15...38....79....152....263.....418.....643......942...1329.1832
.2...93..344..1181...3198...7801...16752...33605....62766.111653
.2.1007.5360.35567.155102.562559.1786114.4984385.12779966

Examples

			Some solutions for n=4 k=4
.....3........2........3........3........1........1........2........2
....2.4......2.2......2.4......3.3......2.0......0.2......2.2......2.2
...2.3.4....2.3.1....2.3.4....3.3.3....2.1.0....0.2.1....3.1.2....3.0.3
..3.2.3.4..1.3.0.4..3.2.4.3..4.3.1.4..2.1.1.0..1.0.2.1..3.1.1.3..3.0.3.2
		

Crossrefs

Row 2 is A000982(n+1)

Formula

Empirical for row n:
n=1: a(k)=2*a(k-1)-a(k-2)
n=2: a(k)=2*a(k-1)-2*a(k-3)+a(k-4)
n=3: a(k)=2*a(k-1)-3*a(k-4)+3*a(k-6)-2*a(k-9)+a(k-10)
n=4: (symmetric, order 30)

A214595 T(n,k) = number of n X n X n triangular 0..k arrays with every horizontal row having the same average value.

Original entry on oeis.org

2, 3, 2, 4, 5, 2, 5, 8, 23, 2, 6, 13, 62, 401, 2, 7, 18, 157, 1862, 20351, 2, 8, 25, 312, 10177, 187862, 2869211, 2, 9, 32, 601, 33352, 3330677, 63120962, 1127599139, 2, 10, 41, 986, 103651, 20608352, 5495329427, 71200442882, 1248252244661, 2, 11, 50, 1619
Offset: 1

Views

Author

R. H. Hardin, Jul 22 2012

Keywords

Examples

			Table starts
.2.....3......4.......5........6.........7.........8..........9.........10
.2.....5......8......13.......18........25........32.........41.........50
.2....23.....62.....157......312.......601.......986.......1619.......2426
.2...401...1862...10177....33352....103651....250042.....589763....1199614
.2.20351.187862.3330677.20608352.121537201.493575042.1877543213.5767190924
Some solutions for n = k = 4:
.....2........1........2........2........2........2........2........2
....3.1......0.2......2.2......3.1......2.2......1.3......4.0......4.0
...3.2.1....0.3.0....3.2.1....2.4.0....0.2.4....3.0.3....1.2.3....4.0.2
..2.2.3.1..2.1.0.1..1.2.4.1..4.2.2.0..1.4.3.0..4.0.2.2..3.2.3.0..4.0.4.0
		

Crossrefs

Row 2 is A000982(n+1). Other rows: A214596, A214597, A214598.

Programs

  • PARI
    /* helper function  mult() gives multiplicity of a composition */
    mult(p, L=1, m=(#p)!)={for(k=2,#p, p[k]!=p[k-1] && m\=(-L+L=k)!); m\(#p-L+1)!}
    A214595(n, k)={sum(a=1,k, prod(L=2,n, my(c=0); forpart(p=L*a, c+=mult(p), [0,k], L); c))+1} \\ M. F. Hasler, Aug 21 2025

Formula

Empirical for row n:
n=1: a(k)=2*a(k-1)-a(k-2)
n=2: a(k)=2*a(k-1)-2*a(k-3)+a(k-4)
n=3: (order 12 antisymmetric)
n=4: (order 32 symmetric)
n=5: (order 84 symmetric)
T(n, k) = Sum_{s=0..k} Product_{L=2..n} NC(s*L, L, k), where NC(s, n, k) is the number of compositions of sum s with n parts between 0 and k. - M. F. Hasler, Aug 21 2025

A008813 Expansion of (1+x^6)/((1-x)^2*(1-x^6)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 12, 15, 18, 21, 24, 29, 34, 39, 44, 49, 54, 61, 68, 75, 82, 89, 96, 105, 114, 123, 132, 141, 150, 161, 172, 183, 194, 205, 216, 229, 242, 255, 268, 281, 294, 309, 324, 339, 354, 369, 384, 401, 418, 435, 452, 469, 486, 505, 524, 543, 562
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n arrays of 7 elements with zero second differences. - R. H. Hardin, Nov 16 2011

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), this sequence (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,9,12];; for n in [9..70] do a[n]:=2*a[n-1]-a[n-2] +a[n-6]-2*a[n-7]+a[n-8]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^6)/((1-x)^2*(1-x^6)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^6)/((1-x)^2*(1-x^6)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^6)/(1-x)^2/(1-x^6), {x,0,70}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,1,-2,1}, {1,2,3,4,5,6,9,12}, 70] (* Harvey P. Dale, Oct 13 2012 *)
  • PARI
    Vec((1+x^6)/((1-x)^2*(1-x^6)) +O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    def A008813_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^6)/((1-x)^2*(1-x^6))).list()
    A008813_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^6)/((1-x)^2*(1-x^6)).
a(n) = 2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008814 Expansion of (1+x^7)/((1-x)^2*(1-x^7)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28, 33, 38, 43, 48, 53, 58, 63, 70, 77, 84, 91, 98, 105, 112, 121, 130, 139, 148, 157, 166, 175, 186, 197, 208, 219, 230, 241, 252, 265, 278, 291, 304, 317, 330, 343, 358, 373, 388, 403, 418, 433, 448, 465, 482, 499
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n arrays of 8 elements with zero second differences. - R. H. Hardin, Nov 16 2011

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), this sequence (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,10,13];; for n in [10..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^7)/((1-x)^2*(1-x^7)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^7)/((1-x)^2*(1-x^7)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^7)/(1-x)^2/(1-x^7), {x,0,70}], x] (* or *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,10,13}, 70] (* Harvey P. Dale, Dec 18 2012 *)
  • PARI
    a(n)=(n*(n+2)+[7,11,13,13,11,7,1][n%7+1])/7 \\ Charles R Greathouse IV, Nov 16 2011
    
  • PARI
    a(n)=(n*(n+2)+13-6*(n%7==6))\7  \\ Tani Akinari, Jul 25 2013
    
  • Sage
    def A008814_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^7)/((1-x)^2*(1-x^7))).list()
    A008814_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^7)/((1-x)^2*(1-x^7)).
a(n) = 2*a(n-1) -a(n-2) +a(n-7) -2*a(n-8) +a(n-9). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019
Previous Showing 31-40 of 112 results. Next