cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 467 results. Next

A103930 Numerators of squares of harmonic numbers A001008/A002805.

Original entry on oeis.org

1, 9, 121, 625, 18769, 2401, 131769, 579121, 50822641, 54479161, 7007531521, 7399612441, 1313299956049, 1372958223289, 1429834803049, 5936819760481, 1775966959381729, 203755669038601, 75787776947048401, 3117562300468225
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The corresponding denominators are given in A103931.

Programs

Formula

G.f.: -((d^3/dx^3)((log(1-x))^3))/3 + dilog(1-x)/(1-x) = ((log(1-x)^2) + dilog(1-x))/(1-x) with dilog(1-x)=polylog(2, x).
First differences give A103932(n)/A103933(n).
a(n) = numerator(H(n)^2), with the harmonic numbers H(n) = A001008(n)/A002805(n), n >= 1.

A349851 Decimal expansion of Sum_{k>=1} H(k)*L(k)/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and L(k) = A000032(k) is the k-th Lucas number.

Original entry on oeis.org

8, 4, 6, 2, 9, 7, 2, 4, 9, 2, 9, 9, 9, 7, 1, 2, 2, 4, 5, 3, 9, 7, 7, 2, 5, 0, 5, 8, 2, 5, 5, 1, 1, 3, 6, 6, 2, 6, 9, 8, 7, 0, 7, 6, 3, 1, 5, 6, 4, 4, 2, 8, 0, 7, 2, 2, 9, 4, 1, 4, 1, 0, 9, 6, 8, 8, 5, 9, 7, 3, 8, 8, 6, 4, 2, 9, 4, 8, 7, 9, 0, 7, 2, 5, 0, 0, 8, 2, 6, 0, 8, 9, 5, 0, 7, 1, 1, 6, 7, 9, 3, 1, 5, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 02 2021

Keywords

Examples

			8.46297249299971224539772505825511366269870763156442...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6*Log[2] + 4*Sqrt[5]*Log[GoldenRatio], 10, 100][[1]]

Formula

Equals log(64*phi^(4*sqrt(5))) = 6*log(2) + 4*sqrt(5)*log(phi), where phi is the golden ratio (A001622).

A035047 Denominators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.

Original entry on oeis.org

1, 2, 3, 4, 15, 12, 105, 24, 315, 120, 3465, 40, 45045, 280, 45045, 560, 765765, 5040, 14549535, 5040, 14549535, 55440, 334639305, 55440, 1673196525, 720720, 5019589575, 720720, 145568097675, 720720
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A035048.

Programs

  • Maple
    S:= series(log(1-x)/(x^2-1), x, 101):
    seq(denom(coeff(S,x,j)),j=1..100); # Robert Israel, Jun 02 2015
  • PARI
    a(n)=denominator(polcoeff(log(1-x)/(x^2-1)+O(x^(n+1)),n))

Formula

G.f. for A035048(n)/A035047(n) : log(1-x)/(x^2-1). - Benoit Cloitre, Jun 15 2003
a(n) = denominator((-1)^(n+1)*1/2*(log(2)+(-1)^(n+1)*(gamma+1/2*(psi(1+n/2)-psi(3/2+n/2))+psi(2+n)))), with gamma the Euler-Mascheroni constant. - [Gerry Martens, Apr 28 2011]

A065454 Let the k-th harmonic number be H(k) = Sum_{i=1..k} 1/i = P(k)/Q(k) = A001008(k)/A002805(k); sequence gives values of k such that Q(k) = Q(k+1).

Original entry on oeis.org

9, 11, 13, 14, 21, 25, 27, 29, 33, 34, 35, 37, 38, 39, 44, 45, 47, 49, 50, 51, 54, 55, 56, 57, 59, 61, 64, 67, 69, 73, 74, 75, 77, 79, 81, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, 101, 103, 105, 107, 110, 111, 113, 114, 115, 116, 117, 118, 121, 122, 123, 125
Offset: 1

Views

Author

Benoit Cloitre, Nov 24 2001

Keywords

Comments

Shiu (2016) proved that this sequence is infinite. Wu and Chen (2019) proved that the asymptotic density of this sequence is 1. - Amiram Eldar, Jan 29 2021

Examples

			For example: H(11) = 83711/27720, H(12) = 86021/27720 and so a(2) = 11.
		

Crossrefs

Programs

  • Mathematica
    Position[Partition[Denominator @ HarmonicNumber[Range[126]], 2, 1], {x_, x_}] // Flatten (* Amiram Eldar, Jan 29 2021 *)

A093569 For p = prime(n), the number of integers k < p-1 such that p divides A001008(k), the numerator of the harmonic number H(k).

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

T. D. Noe, Apr 01 2004

Keywords

Comments

It is well-known that prime p >= 3 divides the numerator of H(p-1). For primes p in A092194, there are integers k < p-1 for which p divides the numerator of H(k). Interestingly, if p divides A001008(k) for k < p-1, then p divides A001008(p-k-1). Hence the terms of this sequence are usually even. The only exceptions are the two known Wieferich primes 1093 and 3511, A001220, which have 3 values of k < p-1 for which p divides A001008(k), one being k = (p-1)/2.

Examples

			a(5) = 2 because 11 = prime(5) and there are 2 values, k = 3 and 7, such that 11 divides A001008(k).
		

Crossrefs

Programs

  • Mathematica
    len=500; Table[p=Prime[i]; cnt=0; k=1; While[k
    				

A103931 Denominators of squares of harmonic numbers A001008/A002805.

Original entry on oeis.org

1, 4, 36, 144, 3600, 400, 19600, 78400, 6350400, 6350400, 768398400, 768398400, 129859329600, 129859329600, 129859329600, 519437318400, 150117385017600, 16679709446400, 6021375110150400, 240855004406016, 26761667156224
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The corresponding numerators are given in A103930. For the rational see the link there.

Programs

  • Mathematica
    Denominator[HarmonicNumber[Range[30]]^2] (* Harvey P. Dale, Oct 16 2022 *)

Formula

a(n)=denominator(H(n)^2), with the harmonic numbers H(n)=A001008(n)/A002805(n), n>=1.

A103933 Denominators of first difference of squares of harmonic numbers A001008/A002805.

Original entry on oeis.org

1, 4, 9, 48, 150, 90, 490, 2240, 11340, 2520, 152460, 83160, 2342340, 2522520, 540540, 11531520, 104144040, 110270160, 737176440, 775975200, 162954792, 56904848, 1368302936, 2141691552, 111546435000, 116008292400, 1084231348200
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The corresponding numerators are given in A103932. For the rationals see the link there.

Programs

  • Mathematica
    Denominator[Differences[HarmonicNumber[Range[0,30]]^2]] (* Harvey P. Dale, Sep 09 2012 *)

Formula

a(n)=numerator(r(n)), with the rationals r(n)=H(n)^2-H(n-1)^2 where H(n)= A001008(n)/A002805(n), n>=1, H(0):=0.

Extensions

Offset corrected by Mohammed Yaseen, Aug 09 2023

A331777 Numerators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 1, 0, -1, 1, -1, -43, 1831, 949, -137309, -85511, 3404045159, 777985057, -21024051077, -2192231411, 467347169033357, 10187765700589, -11741590582705819219, -3086703970985605357, 169597995722575162268081, 19606186988235984155519, -62715098968866173387571821
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Denominators are in A331778.

Programs

  • Mathematica
    Numerator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

Sign of a(7) corrected and more terms from Vaclav Kotesovec, Feb 10 2020

A331778 Denominators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 3, 1, 90, 90, 567, 5670, 340200, 113400, 11226600, 5613300, 91945854000, 18389170800, 137918781000, 13135122000, 562708626480000, 11483849520000, 2020686677689680000, 505171669422420000, 3334133018187972000000, 370459224243108000000, 115027589127485034000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Numerators are in A331777.

Programs

  • Mathematica
    Denominator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

More terms from Vaclav Kotesovec, Feb 10 2020

A363538 Decimal expansion of Sum_{k>=1} (H(k) - log(k) - gamma)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

7, 2, 8, 6, 9, 3, 9, 1, 7, 0, 0, 3, 9, 3, 0, 6, 0, 5, 9, 3, 7, 6, 0, 5, 8, 9, 1, 0, 2, 0, 2, 9, 1, 8, 0, 0, 4, 1, 7, 5, 0, 2, 7, 1, 8, 8, 1, 2, 9, 2, 2, 2, 9, 9, 8, 9, 1, 3, 6, 9, 0, 0, 5, 4, 2, 5, 2, 7, 2, 2, 7, 1, 9, 2, 5, 2, 3, 3, 5, 8, 6, 9, 6, 4, 2, 6, 9, 7, 4, 4, 2, 3, 8, 8, 6, 5, 3, 7, 8, 6, 0, 4, 5, 5, 9
Offset: 0

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			0.72869391700393060593760589102029180041750271881292...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[1] - EulerGamma^2/2 + Pi^2/12, 10, 120][[1]]

Formula

Equals -gamma_1 - gamma^2/2 + Pi^2/12, where gamma_1 is the 1st Stieltjes constant (A082633).
Previous Showing 21-30 of 467 results. Next