cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 117 results. Next

A001556 a(n) = 1^n + 2^n + ... + 9^n.

Original entry on oeis.org

9, 45, 285, 2025, 15333, 120825, 978405, 8080425, 67731333, 574304985, 4914341925, 42364319625, 367428536133, 3202860761145, 28037802953445, 246324856379625, 2170706132009733, 19179318935377305, 169842891165484965, 1506994510201252425
Offset: 0

Views

Author

Keywords

Comments

Conjectures for o.g.f.s for this type of sequences appear in the PhD thesis by Simon Plouffe. See A001552 for the reference. These conjectures are proved in the link given in A196837. - Wolfdieter Lang, Oct 15 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 9 of array A103438. A196837.

Programs

  • Mathematica
    Table[Total[Range[9]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)

Formula

a(n) = sum_{j=1..9} j^n, n>=0.
From Wolfdieter Lang, Oct 15 2011: (Start)
E.g.f.: (1-exp(9*x))/(exp(-x)-1) = sum(exp(j*x),j=1..9) (trivial).
O.g.f.: (9 - 360*x + 6090*x^2 - 56700*x^3 + 316365*x^4 - 1077300*x^5 + 2171040*x^6 - 2345400*x^7 + 1026576*x^8)/product_{j=1..9} (1-j*x).
From the e.g.f. via Laplace transformation. See the proof in a link under A196837.
(End)
a(n) = A001555(n) + A001019(n). - Michel Marcus, Jul 26 2013

Extensions

More terms from Jon E. Schoenfield, Mar 24 2010

A009989 Powers of 45.

Original entry on oeis.org

1, 45, 2025, 91125, 4100625, 184528125, 8303765625, 373669453125, 16815125390625, 756680642578125, 34050628916015625, 1532278301220703125, 68952523554931640625, 3102863559971923828125, 139628860198736572265625, 6283298708943145751953125, 282748441902441558837890625
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 45), L(1, 45), P(1, 45), T(1, 45). Essentially same as Pisot sequences E(45, 2025), L(45, 2025), P(45, 2025), T(45, 2025). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 45-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-45*x). - Philippe Deléham, Nov 24 2008
a(n) = 45^n; a(n) = 45*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(45*x).
a(n) = A000244(n)*A001024(n) = A000351(n)*A001019(n). (End)

A165293 Inverse of A038303, and generalization of A130595.

Original entry on oeis.org

1, 10, -1, 100, -20, 1, 1000, -300, 30, -1, 10000, -4000, 600, -40, 1, 100000, -50000, 10000, -1000, 50, -1, 1000000, -600000, 150000, -20000, 1500, -60, 1, 10000000, -7000000, 2100000, -350000, 35000, -2100, 70
Offset: 1

Views

Author

Mark Dols, Sep 13 2009

Keywords

Comments

Rows sum up to A001019 (powers of 9), diagonals to A004189, a generalization of A010892 (the inverse Fibonacci). Ratio of diagonal sums converges to a decimal sequence: A000108 (Catalan numbers), which is the squared difference of sqrt(2) and sqrt(3), or 5-sqrt(24). Ratio between first binomial transform (A054320 and A138288)of A004189, converges to sqrt(2/3). 1/(2*sqrt(24)) gives A000984 (central binomial coefficients) as a decimal sequence.
Triangle T(n,k), read by rows, given by [10,0,0,0,0,0,0,0,...] DELTA [ -1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009

Examples

			Triangle begins:
      1;
     10,    -1;
    100,   -20,   1;
   1000,  -300,  30,  -1;
  10000, -4000, 600, -40, 1;
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = (10-x)^n. - Philippe Deléham, Dec 15 2009
G.f.: x*y/(1-10*x+x*y). - R. J. Mathar, Aug 11 2015

A270369 Expansion of g.f. (1-7*x)/(1-9*x).

Original entry on oeis.org

1, 2, 18, 162, 1458, 13122, 118098, 1062882, 9565938, 86093442, 774840978, 6973568802, 62762119218, 564859072962, 5083731656658, 45753584909922, 411782264189298, 3706040377703682, 33354363399333138, 300189270593998242, 2701703435345984178, 24315330918113857602, 218837978263024718418
Offset: 0

Views

Author

Colin Barker, Mar 18 2016

Keywords

Crossrefs

Cf. A001019 (powers of 9), A054879 (partial sums), A132025.
Cf. similar sequences with g.f. (1-k*x)/(1-9*x) and k=0..8: A001019 (k=0; k=8 gives two initial 1's ), A055275 (k=1), A270472 (k=2), A092810 (k=3), A067403 (k=4), A270473 (k=5), A102518 (k=6), this sequence (k=7).

Programs

  • Mathematica
    CoefficientList[Series[(1-7x)/(1-9x),{x,0,20}],x] (* or *) Join[ {1}, NestList[9#&,2,20]] (* Harvey P. Dale, Oct 15 2017 *)
  • PARI
    Vec((1-7*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-7*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 2*9^(n-1) for n>0.
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 25/16.
Sum_{n>=0} (-1)^n/a(n) = 11/20.
Product_{n>=1} (1 - 1/a(n)) = A132025. (End)
E.g.f.: (2*exp(9*x) + 7)/9. - Elmo R. Oliveira, Mar 25 2025

A270473 Expansion of g.f. (1-5*x)/(1-9*x).

Original entry on oeis.org

1, 4, 36, 324, 2916, 26244, 236196, 2125764, 19131876, 172186884, 1549681956, 13947137604, 125524238436, 1129718145924, 10167463313316, 91507169819844, 823564528378596, 7412080755407364, 66708726798666276, 600378541187996484, 5403406870691968356, 48630661836227715204
Offset: 0

Views

Author

Colin Barker, Mar 17 2016

Keywords

Comments

Also squares that can be expressed as the sum of two powers of three (3^x + 3^y), except a(0). - Karl-Heinz Hofmann, Sep 03 2022

Crossrefs

Cf. A001019 (powers of 9), A083884 (partial sums).
Cf. A067403: (1-4*x)/(1-9*x); A102518: (1-6*x)/(1-9*x).

Programs

  • Mathematica
    Join[{1},NestList[9#&,4,20]] (* Harvey P. Dale, Oct 23 2022 *)
  • PARI
    Vec((1-5*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-5*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 4*9^(n-1) for n>0.
E.g.f.: (4*exp(9*x) + 5)/9. - Stefano Spezia, Jul 09 2024

A271880 Decimal expansion of the probability that a random real number is evil.

Original entry on oeis.org

1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 8, 3, 3, 7, 7, 7, 3, 1, 6, 2, 8, 6, 4, 7, 6, 0, 5, 5, 2, 7, 9, 4, 6, 2, 5, 9, 4, 0, 6, 5, 1, 3, 3, 3, 2, 7, 7, 5, 6, 1, 9
Offset: 0

Views

Author

Stanislav Sykora, Apr 16 2016

Keywords

Comments

A real number is said to be evil if the cumulative sum of its digits following the decimal point 'hits' the value 666. It is amazing how close this value is to 1/5 (the difference is in A271881).

Examples

			0.19999999999999999999999999999999999999999999999999999999999999978337...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[SeriesCoefficient[(1 - x^9)/(x^10 - 10 x + 9), {x, 0, 665}], 10, 120][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    0.0 + Vec(Ser((1-x^9)/(x^10-10*x+9),x,666))[666]

Formula

Equals A100061(666)/A100062(666).

A363249 Leading digit of 9^n.

Original entry on oeis.org

1, 9, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 9, 8, 7, 7, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 9, 8, 7, 7, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 9, 8, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 9, 8, 7, 6, 6, 5, 4, 4, 4, 3, 3, 2, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 15 2023

Keywords

References

  • He, Xinwei; Hildebrand, A J; Li, Yuchen; Zhang, Yunyi, Complexity of Leading Digit Sequences, Discrete Mathematics and Theoretical Computer Science; 22 (2020), #14.

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerDigits[9^n][[1]]; Array[a, 100, 0] (* Amiram Eldar, Jul 15 2023 *)
  • PARI
    a(n) = digits(9^n)[1];

Formula

a(n) = A000030(A001019(n)).
a(n) = A060956(2*n).

A013714 a(n) = 9^(2*n + 1).

Original entry on oeis.org

9, 729, 59049, 4782969, 387420489, 31381059609, 2541865828329, 205891132094649, 16677181699666569, 1350851717672992089, 109418989131512359209, 8862938119652501095929, 717897987691852588770249, 58149737003040059690390169, 4710128697246244834921603689
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 81*a(n-1); a(0)=9.
G.f.: 9/(1-81*x). (End)
From Elmo R. Oliveira, Aug 26 2024: (Start)
E.g.f.: 9*exp(81*x).
a(n) = 3*A013778(n) = A001019(A005408(n)). (End)

A018870 9^a(n) is smallest power of 9 beginning with n.

Original entry on oeis.org

0, 12, 9, 7, 5, 4, 3, 2, 1, 21, 42, 20, 19, 40, 18, 17, 60, 16, 59, 15, 80, 14, 101, 57, 13, 78, 34, 12, 77, 33, 11, 98, 54, 10, 119, 75, 53, 9, 118, 96, 52, 30, 8, 95, 73, 51, 7, 138, 94, 72, 50, 28, 6, 115, 93, 71, 49, 27, 5, 114, 92, 70, 48, 26, 4, 135, 113, 91, 69, 47, 25, 3, 134
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 12 since 9^12 = 282429536481 is the smallest power of 9 that begins with 2.
		

Crossrefs

Programs

  • Python
    def a(n):
        s, k = str(n), 0
        while not str(9**k).startswith(s): k += 1
        return k
    print([a(n) for n in range(1, 74)]) # Michael S. Branicky, Dec 09 2021

A055692 Numbers k such that 9^k == -1 (mod k-1).

Original entry on oeis.org

2, 3, 11, 42, 147, 13818, 21450, 27594, 41370, 55011, 126291, 265722, 417123, 1315635, 3994571, 5704611, 6860490, 9298842, 13941354, 14349027, 17658578, 20382810, 26557874, 27841338, 69831363, 86550090, 113272170, 130457571, 163013235, 192688650, 211142538, 333792522
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Crossrefs

Cf. A001019.

Programs

  • Mathematica
    Do[If[PowerMod[9, n, n-1]==n-2, Print[n]], {n, 2, 10^8}]
  • PARI
    isok(k) = Mod(9, k-1)^k == -1; \\ Michel Marcus, Jul 12 2021
Previous Showing 51-60 of 117 results. Next