A086874
Seventh power of odd primes.
Original entry on oeis.org
2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Sep 16 2003
Cf.
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A091947
(Fractional part of 1.1^n) * 10^n.
Original entry on oeis.org
0, 1, 21, 331, 4641, 61051, 771561, 9487171, 14358881, 357947691, 5937424601, 85311670611, 138428376721, 4522712143931, 79749833583241, 177248169415651, 5949729863572161, 5447028499293771, 559917313492231481
Offset: 0
a(2) = (1.1^2 - floor(1.1^2))*10^2 = (1.21 - 1)*100 = 21.
A094972
a(n) = floor(11^n/2^n).
Original entry on oeis.org
1, 5, 30, 166, 915, 5032, 27680, 152243, 837339, 4605366, 25329516, 139312339, 766217865, 4214198259, 23178090428, 127479497357, 701137235467, 3856254795069, 21209401372879, 116651707550839, 641584391529617
Offset: 0
A110195
a(n) = 11^((n^2-n)/2).
Original entry on oeis.org
1, 1, 11, 1331, 1771561, 25937424601, 4177248169415651, 7400249944258160101211, 144209936106499234037676064081, 30912680532870672635673352936887453361, 72890483685103052142902866787761839379440139451, 1890591424712781041871514584574319778449301246603238034051
Offset: 0
Cf.
A001020,
A006125,
A047656,
A053763,
A053764,
A109345,
A109354,
A109493,
A109966,
A110147,
A161680.
-
Table[11^((n^2-n)/2),{n,0,20}] (* Harvey P. Dale, Feb 02 2012 *)
Join[{1,1},Table[Det[Table[Binomial[11i,j],{i,n},{j,n}]],{n,10}]] (* Harvey P. Dale, Apr 01 2019 *)
A139744
a(n) = 11^n - 6^n.
Original entry on oeis.org
0, 5, 85, 1115, 13345, 153275, 1724905, 19207235, 212679265, 2347869995, 25876958425, 284948873555, 3136251594385, 34509651449915, 379671469419145, 4176777984431075, 45946908753664705, 505430101839849035, 5559815753535563065, 61158481088674535795
Offset: 0
-
[11^n-6^n: n in [0..30]]; // Vincenzo Librandi, Jun 02 2011
-
Table[11^n-6^n,{n,0,30}] (* or *) LinearRecurrence[{17,-66},{0,5},30] (* Harvey P. Dale, Jul 17 2019 *)
A159460
Numerator of Hermite(n, 9/11).
Original entry on oeis.org
1, 18, 82, -7236, -189780, 3588408, 294225144, 85684176, -496875078768, -9109635982560, 918220473870624, 38573287607466432, -1749983724509205312, -143516534253248214144, 2922151180747492056960, 538832739303459806545152, -908419478651119648952064
Offset: 0
Numerator of 1, 18/11, 82/121, -7236/1331, -189780/14641, 3588408/161051, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(18/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 15 2018
-
A159460 := proc(n)
orthopoly[H](n,9/11) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n,9/11],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
-
a(n)=numerator(polhermite(n,9/11)) \\ Charles R Greathouse IV, Jan 29 2016
A159470
Numerator of Hermite(n, 10/11).
Original entry on oeis.org
1, 20, 158, -6520, -245108, 1409200, 324764680, 4449135200, -461168663920, -17836899025600, 647687369505760, 56119043032067200, -601762916982989120, -175004959304782931200, -1606953049267174852480, 560777741139261073856000, 17048794391625066191622400
Offset: 0
Numerator of 1, 20/11, 158/121, -6520/1331, -245108/14641, 1409200/161051, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(20/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 15 2018
-
A159470 := proc(n)
orthopoly[H](n,10/11) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n,10/11],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
-
a(n)=numerator(polhermite(n,10/11)) \\ Charles R Greathouse IV, Jan 29 2016
A159806
Numerator of Hermite(n, 1/22).
Original entry on oeis.org
1, 1, -241, -725, 174241, 876041, -209955569, -1481967101, 354182766785, 3223271074321, -768186794983409, -8568502794840229, 2036344745450994529, 26919276861667019545, -6379421292327161768689, -97581931299655023987149, 23059717359847942196353921
Offset: 0
Numerator of 1, 1/11, -241/121, -725/1331, 174241/14641, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(1/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
-
Numerator[Table[HermiteH[n, 1/22], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
Table[11^n*HermiteH[n, 1/22], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
-
a(n)=numerator(polhermite(n, 1/22)) \\ Charles R Greathouse IV, Jan 29 2016
A159807
Numerator of Hermite(n, 3/22).
Original entry on oeis.org
1, 3, -233, -2151, 162705, 2570283, -189162201, -4299537519, 307542155937, 9246531104595, -642087222317001, -24302866940070903, 1636327584987643953, 75484508348928834171, -4921433057324341373625, -270505813458143914292223, 17053284557712927443382081
Offset: 0
Numerators of 1, 3/11, -233/121, -2151/1331, 162705/14641, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(3/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
-
Numerator/@HermiteH[Range[0,20],3/22] (* Harvey P. Dale, May 01 2011 *)
-
makelist(num(hermite(n, 3/22)), n, 0, 20); /* Bruno Berselli, Jan 19 2017 */
-
a(n)=numerator(polhermite(n, 3/22)) \\ Charles R Greathouse IV, Jan 29 2016
-
[numerator(hermite(n, 3/22)) for n in range(20)] # Bruno Berselli, Jan 19 2017
A159808
Numerator of Hermite(n, 5/22).
Original entry on oeis.org
1, 5, -217, -3505, 140017, 4092925, -148955945, -6687706825, 218892836705, 14041864596725, -406539275359865, -36014008700873825, 902137507503591505, 109095368804855545325, -2292647754582021148105, -381078348283760693301625, 6416919607713933301113025
Offset: 0
Numerators of 1, 5/11, -217/121, -3505/1331, 140017/14641, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(5/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
-
Numerator[Table[HermiteH[n, 5/22], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
Table[11^n*HermiteH[n, 5/22], {n,0,30}] (* G. C. Greubel, Jul 11 2018 *)
-
a(n)=numerator(polhermite(n, 5/22)) \\ Charles R Greathouse IV, Jan 29 2016
Comments