cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A159653 Numerator of Hermite(n, 15/19).

Original entry on oeis.org

1, 30, 178, -37980, -1524948, 63937800, 7423196280, -54282661200, -39145313835120, -860822763962400, 228541566381737760, 13071387347260660800, -1422935499785941465920, -155938564970244609148800, 8677515651883508324661120, 1836552484275737759015904000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 30/19, 178/361, -37980/6859, -1524948/130321, 63937800/2476099, ...
		

Crossrefs

Cf. A001029 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(30/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
  • Maple
    A159653 := proc(n)
            orthopoly[H](n,15/19) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n, 15/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
    Table[19^n*HermiteH[n, 15/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,15/19)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) - 30*a(n-1) + 722*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 15/19).
E.g.f.: exp(30*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(30/19)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159654 Numerator of Hermite(n, 16/19).

Original entry on oeis.org

1, 32, 302, -36544, -1823540, 47185792, 8092924744, 54564740864, -39155569948528, -1568144181583360, 204252279714867424, 17858073941907616768, -1050713239354433344832, -188345176292029458712576, 3834948823235768695790720, 2026511404303378366932021248
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 32/19, 302/361, -36544/6859, -1823540/130321, 47185792/2476099, ...
		

Crossrefs

Cf. A001029 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(32/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
  • Maple
    A159654 := proc(n)
            orthopoly[H](n,16/19) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n, 16/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
    Table[19^n*HermiteH[n, 16/19], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,16/19)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) - 32*a(n-1) + 722*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 16/19).
E.g.f.: exp(32*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(32/19)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159655 Numerator of Hermite(n, 17/19).

Original entry on oeis.org

1, 34, 434, -34340, -2107604, 27515384, 8543973496, 171298455376, -37357094566000, -2259561093495776, 165921323311011616, 21955356087613897664, -571265042757181733696, -209644216596830988306560, -1766009672973345849952384, 2059039412479673870904327424
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 34/19, 434/361, -34340/6859, -2107604/130321, 27515384/2476099,..
		

Crossrefs

Cf. A001029 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(34/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
  • Maple
    A159655 := proc(n)
            orthopoly[H](n,17/19) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n, 17/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
    Table[19^n*HermiteH[n, 17/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,17/19)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) -34*a(n-1) +722*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 17/19).
E.g.f.: exp(34*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(34/19)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159656 Numerator of Hermite(n, 18/19).

Original entry on oeis.org

1, 36, 574, -31320, -2370804, 5103216, 8742318216, 292616324064, -33649488597360, -2901533477298624, 114199171722894816, 25060241888120278656, -4801113850900597056, -217294775817306515769600, -7777548674818481563737984, 1916423841667868925104549376
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 36/19, 574/361, -31320/6859, -2370804/130321, 5103216/2476099,...
		

Crossrefs

Cf. A001029 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(36/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
  • Maple
    A159656 := proc(n)
            orthopoly[H](n,18/19) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n, 18/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
    Table[19^n*HermiteH[n,18/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,18/19)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) -36*a(n-1) +722*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 18/19).
E.g.f.: exp(36*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(36/19)^(n-2*k)/(k!*(n-2*k)!)). (End)

A165840 Totally multiplicative sequence with a(p) = 19.

Original entry on oeis.org

1, 19, 19, 361, 19, 361, 19, 6859, 361, 361, 19, 6859, 19, 361, 361, 130321, 19, 6859, 19, 6859, 361, 361, 19, 130321, 361, 361, 6859, 6859, 19, 6859, 19, 2476099, 361, 361, 361, 130321, 19, 361, 361, 130321, 19, 6859, 19, 6859, 6859, 361, 19, 2476099, 361
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Programs

  • Mathematica
    19^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 09 2016 *)

Formula

a(n) = A001029(A001222(n)) = 19^bigomega(n) = 19^A001222(n).

A197353 a(0)=0, a(1)=1, a(2n)=19*a(n), a(2n+1)=a(2n)+1.

Original entry on oeis.org

0, 1, 19, 20, 361, 362, 380, 381, 6859, 6860, 6878, 6879, 7220, 7221, 7239, 7240, 130321, 130322, 130340, 130341, 130682, 130683, 130701, 130702, 137180, 137181, 137199, 137200, 137541, 137542, 137560, 137561, 2476099, 2476100, 2476118, 2476119
Offset: 0

Views

Author

Philippe Deléham, Oct 14 2011

Keywords

Comments

Numbers whose set of base 19 digits is {0,1}.
Sums of distinct powers of 19.
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 17 2011

Crossrefs

Programs

  • Magma
    [n: n in [0..2500000] | Set(IntegerToSequence(n, 19)) subset {0, 1}]; // Vincenzo Librandi, Jun 05 2012
  • Mathematica
    FromDigits[#,19]&/@Tuples[{0,1},5] (* Vincenzo Librandi, Jun 05 2012 *)

Formula

a(n) = Sum_{k>=0} A030308(n,k)*19^k.
G.f.: (1/(1 - x))*Sum_{k>=0} 19^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

A359059 Numbers k such that phi(k) + rad(k) + psi(k) is a multiple of 3.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 23, 27, 29, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 49, 50, 53, 54, 59, 61, 63, 67, 68, 71, 72, 73, 78, 79, 80, 81, 83, 84, 89, 90, 92, 97, 99, 101, 103, 105, 107, 108, 109, 110, 113, 114, 116, 117, 125, 126, 127, 128, 131, 135, 137, 139
Offset: 1

Views

Author

Torlach Rush, Dec 14 2022

Keywords

Comments

When k is prime (denote as p), phi(p) = p - 1, rad(p) = p, and psi(p) = p + 1, so phi(p) + rad(p) + psi(p) = 3*p. Therefore, A000040 is a subsequence.
When k = p^m (m>=1) with p prime, phi(p^m) = (p-1)*p^(m-1), rad(p^m) = p, and psi(p^m) = (p+1)*p^(m-1), so phi(p^m) + rad(p^m) + psi(p^m) = 2*p^m + p = p * (1+2*p^(m-1)). Then, this expression is a multiple of 3 iff p == 0 or 1 (mod 3), equivalently iff p is a generalized cuban prime of A007645. Therefore, as 1 is also a term, every sequence {p^m, p in A007645, m>=0} is a subsequence. See crossrefs section. - Bernard Schott, Jan 25 2023 after an observation of Alois P. Heinz

Examples

			8 is a term because 4+2+12 is divisible by 3.
		

Crossrefs

Cf. A000010 (phi), A000040, A001615 (psi), A007645, A007947 (rad), A001748 (3*p), A000244.
Subsequences of the form {p^n, n>=0}: A000244 (p=3), A000420 (p=7), A001022 (p=13), A001029 (p=19), A009975 (p=31), A009981 (p=37), A009987 (p=43).

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Divisible[Times @@ ((p - 1)*p^(e - 1)) + Times @@ p + Times @@ ((p + 1)*p^(e - 1)), 3]]; Select[Range[170], q] (* Amiram Eldar, Dec 15 2022 *)
  • PARI
    isok(m) = ((eulerphi(m) + factorback(factorint(m)[, 1]) + m*sumdiv(m, d, moebius(d)^2/d)) % 3) == 0; \\ Michel Marcus, Dec 27 2022
  • Python
    from sympy.ntheory.factor_ import totient
    from sympy import primefactors, prod
    def rad(n): return 1 if n < 2 else prod(primefactors(n))
    def psi(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist)
    # Output display terms.
    for n in range(1,170):
        if(0 == (totient(n) + rad(n) + psi(n)) % 3):
            print(n, end = ", ")
    

A231290 Numbers k dividing u(k), where the Lucas sequence is defined u(i) = u(i-1) - 5*u(i-2) with initial conditions u(0)=0, u(1)=1.

Original entry on oeis.org

1, 12, 19, 24, 36, 48, 72, 84, 96, 108, 144, 168, 192, 216, 228, 252, 288, 324, 336, 361, 384, 432, 456, 504, 576, 588, 648, 672, 684, 744, 756, 768, 816, 864, 912, 972, 1008, 1092, 1152, 1176, 1296, 1344, 1368, 1488, 1512, 1536, 1596, 1632, 1728, 1764
Offset: 0

Views

Author

Thomas M. Bridge, Nov 06 2013

Keywords

Comments

Contains every nonnegative power of 19. All terms that are not a power of 19 are multiples of 12.

Crossrefs

Cf. A001029 (powers of 19 (subsequence)).

Programs

  • Mathematica
    nn = 3000; s = LinearRecurrence[{1, -5}, {1, 1}, nn]; t = {}; Do[If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 08 2013 *)
Previous Showing 31-38 of 38 results.