cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A264051 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A264078(n)) is the number of integer partitions of n having k standard Young tableaux such that no entries i and i+1 appear in the same row.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 0, 2, 4, 2, 1, 1, 1, 1, 1, 4, 3, 1, 0, 0, 2, 2, 0, 1, 0, 1, 0, 0, 0, 1, 7, 2, 0, 0, 1, 0, 3, 0, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 7, 3, 1, 2, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1
Offset: 0

Views

Author

Christian Stump, Nov 01 2015

Keywords

Comments

Row sums give A000041.
Column k=0 gives A025065(n-2) for n>=2.

Examples

			Triangle begins:
0,1,
0,1,
1,1,
1,2,
2,2,1,
2,3,0,2,
4,2,1,1,1,1,1,
4,3,1,0,0,2,2,0,1,0,1,0,0,0,1,
7,2,0,0,1,0,3,0,1,0,2,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,
...
		

Crossrefs

Programs

  • Maple
    h:= proc(l, j) option remember; `if`(l=[], 1,
          `if`(l[1]=0, h(subsop(1=[][], l), j-1), add(
          `if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]),
           h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l))))
        end:
    g:= proc(n, i, l) `if`(n=0 or i=1, x^h([1$n, l[]], 0),
          `if`(i<1, 0, g(n, i-1, l)+ `if`(i>n, 0,
           g(n-i, i, [i, l[]]))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2, [])):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 02 2015
  • Mathematica
    h[l_, j_] := h[l, j] = If[l == {}, 1, If[l[[1]] == 0, h[ReplacePart[l, 1 -> Sequence[]], j - 1], Sum[If[i != j && l[[i]] > 0 && (i == 1 || l[[i]] > l[[i - 1]]), h[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, Length[l]} ]]]; g[n_, i_, l_] := If[n == 0 || i == 1, x^h[Join[Array[1 &, n], l], 0], If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Join[{i}, l]]] ]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n, {}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)

Formula

Sum_{k=1..A264078(n)} k*T(n,k) = A237770(n). - Alois P. Heinz, Nov 02 2015

A347675 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of Baxter matrices of size n X k that contain the minimal number of 1's.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 12, 6, 12, 1, 1, 20, 32, 32, 20, 1, 1, 30, 100, 22, 100, 30, 1, 1, 42, 240, 172, 172, 240, 42, 1, 1, 56, 490, 744, 92, 744, 490, 56, 1, 1, 72, 896, 2364, 956, 956, 2364, 896, 72, 1, 1, 90, 1512, 6174, 5328, 422, 5328, 6174, 1512, 90, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2021

Keywords

Examples

			The array begins:
1,1,1,1,1,1,1,...
1,2,6,12,20,30,42,...
1,6,6,32,100,240,490,...
1,12,32,22,172,744,2364,...
1,20,100,172,92,956,5328,...
1,30,240,744,956,422,5492,...
1,42,490,2364,5328,5492,2074,...
...
The first few antidiagonals are:
1,
1,1,
1,2,1,
1,6,6,1,
1,12,6,12,1,
1,20,32,32,20,1,
1,30,100,22,100,30,1,
1,42,240,172,172,240,42,1,
1,56,490,744,92,744,490,56,1,
...
		

Crossrefs

The main diagonal is A001181.

Formula

a(n) <= A347672(n). - Michael S. Branicky, Sep 15 2021

Extensions

a(46)-a(66) from Michael S. Branicky, Sep 14 2021

A368708 a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -2).

Original entry on oeis.org

1, 1, 3, 13, 69, 417, 2763, 19609, 146793, 1146833, 9278595, 77292261, 659973933, 5756169681, 51137399979, 461691066417, 4228199347281, 39216540096993, 367890444302787, 3486697883136957, 33353178454762389, 321754445379041601, 3127955713554766923, 30624486778208481993, 301790556354721667769, 2991957347531210976817
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify( hypergeom([-1 - n, -n, 1 - n], [2, 3], -2) ), n = 0..25); # Peter Bala, Sep 09 2024
  • Mathematica
    Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -2], {n, 0, 30}] (* Vaclav Kotesovec, Jan 04 2024 *)
    a[0] := 1; a[n_] := 2^(n + 1)/(n*(n + 1)^2)*Sum[(1/2)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1], {k, 1, n}]; Table[a[n], {n, 0, 25}] (* Detlef Meya, May 28 2024 *)
  • Python
    def A368708(n):
        if n == 0: return 1
        return sum(2**k * v for k, v in enumerate(A359363Row(n))) // 2
    print([A368708(n) for n in range(26)]) # Peter Luschny, Jan 04 2024
  • SageMath
    def A368708(n): return PolyA359363(n, 2) // 2 if n > 0 else 1
    print([A368708(n) for n in range(23)])  # Peter Luschny, Jan 04 2024
    

Formula

a(n) = (1/2)*B(n, 2) where B(n, x) are the Baxter polynomials with coefficients A359363, for n > 0. - Peter Luschny, Jan 04 2024
a(n) ~ 3^(n + 7/6) * (2^(2/3) + 2^(1/3) + 1)^(n + 5/3) / (2^(4/3) * Pi * n^4). - Vaclav Kotesovec, Jan 04 2024
a(0) = 1, a(n) = 2^(n + 1)/(n*(n + 1)^2)*Sum_{k=1..n} (1/2)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1). - Detlef Meya, May 29 2024
From Peter Bala, Sep 09 2024: (Start)
a(n+1) = Sum_{k = 0..n} A056939(n, k)*2^k.
P-recursive: (n+1)*(n+3)*(n+2)*(3*n-2)*a(n) = 3*(9*n^3+3*n^2-4*n+4)*(n+1)*a(n-1) + 3*(n-2)*(3*n-1)*(9*n^2-3*n-10)*a(n-2) + 27*(3*n+1)*(n-3)*(n-2)^2*a(n-3) = 0 with a(0) = 1, a(1) = 1 and a(2) = 3. (End)

A377922 Number of polyhedral orientations with n inner vertices.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 4, 15, 39, 122, 375, 1212, 3980, 13413, 45966, 160295, 566985, 2032110, 7368334, 27000759, 99891654, 372788553, 1402339329, 5313959388, 20272563265, 77822173758, 300473023929, 1166377045666, 4550358858954, 17835405078273, 70213720795466, 277552814035683
Offset: 0

Views

Author

N. J. A. Sloane, Dec 13 2024

Keywords

Comments

a(n) is also the number of combinatorial types of corner polyhedra with n+3 flats, and the number of weak equivalence classes of tricolored contact-systems with n+3 curves. - Éric Fusy, Dec 14 2024

Crossrefs

Extensions

a(13) onwards from Éric Fusy, Dec 14 2024

A001185 Number of nontrivial Baxter permutations of length 2n-1.

Original entry on oeis.org

0, 1, 1, 7, 21, 112, 456, 2603, 13203
Offset: 1

Views

Author

Keywords

References

  • W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A342967 a(n) = 1 + Sum_{j=1..n} Product_{k=0..j-1} binomial(2*n-1,n+k) / binomial(2*n-1,k).

Original entry on oeis.org

1, 2, 5, 22, 177, 2606, 70226, 3457742, 311348897, 51177188350, 15377065068510, 8430169458379450, 8446194335222422950, 15435904380166258833482, 51546769958534244310727102, 313937270864810066000897492222, 3493348088919874482660174997662017
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Sum[Product[Binomial[2*n - 1, n + k]/Binomial[2*n - 1, k], {k, 0, j - 1}], {j, 1, n}]; Array[a, 17, 0] (* Amiram Eldar, Apr 01 2021 *)
    Table[1 + BarnesG[2*n + 1] * Sum[BarnesG[j + 1]*BarnesG[n - j + 1] / (BarnesG[n + j + 1]*BarnesG[2*n - j + 1]), {j, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 02 2021 *)
  • PARI
    a(n) = 1+sum(j=1, n, prod(k=0, j-1, binomial(2*n-1, n+k)/binomial(2*n-1, k)));
    
  • PARI
    a(n) = sum(j=0, n, prod(k=0, n-1, binomial(n+k, j)/binomial(j+k, j)));

Formula

a(n) = Sum_{j=0..n} Product_{k=0..n-1} binomial(n+k,j)/binomial(j+k,j).
a(n) ~ c * exp(1/12) * 2^(4*n^2 - 1/12) / (A * n^(1/12) * 3^(9*n^2/4 - 1/6)), where c = JacobiTheta3(0,1/3) = EllipticTheta[3, 0, 1/3] = 1.69145968168171534134842... if n is even, and c = JacobiTheta2(0,1/3) = EllipticTheta[2, 0, 1/3] = 1.69061120307521423305296... if n is odd, and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 02 2021

A348351 Number of permutations of [n] avoiding the patterns 2-41-3, 3-14-2, 2-14-3, and 3-41-2.

Original entry on oeis.org

1, 1, 2, 6, 20, 72, 274, 1088, 4470, 18884, 81652, 360054, 1614618, 7346688, 33856008, 157777908, 742637416
Offset: 0

Views

Author

Manfred Scheucher, Oct 20 2021

Keywords

Comments

Also the number of one-sided rectangulations.

References

  • L. J. Leifheit, Combinatorial Properties of Rectangulations, Master's thesis, Technische Universität Berlin, 2021.

Crossrefs

Extensions

Name corrected by Manfred Scheucher, May 24 2023
a(0)=1 prepended by Alois P. Heinz, Feb 05 2024

A356111 The number of 1+1+1-free ordered posets of [n].

Original entry on oeis.org

1, 1, 2, 6, 23, 102, 497, 2586, 14127, 80146, 468688, 2810163, 17206549, 107261051, 679096359, 4358360362, 28309516828, 185862601727, 1232042778231, 8238155634738, 55521191613041, 376888928783870, 2575334987109807, 17704834935517727, 122401523831513816
Offset: 0

Views

Author

David Bevan, Jul 27 2022

Keywords

Comments

A partial order R on [n] is ordered if xRy implies x < y; i.e., the natural order (<) is a linear extension of R. 1+1+1-free posets are those with width (longest antichain) at most 2.

Examples

			The six 1+1+1-free ordered posets of [3] are those with covering relations {(1,2)}, {(1,3)}, {(2,3)}, {(1,2), (1,3)}, {(1,2), (2,3)} and {(1,3), (2,3)}.
		

Crossrefs

See A006455 for the number of all ordered posets on [n], and A135922 for the number of ordered posets on [n] with height at most two.
Cf. A001181.

Formula

Conjectured g.f.: 2 - 2*x/(B(x)-1+x), where B(x) is the o.g.f. for A001181. - Michael D. Weiner, Oct 04 2024

A368709 a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], +2).

Original entry on oeis.org

1, 1, -1, -3, 13, 17, -241, 121, 5081, -13327, -106705, 609589, 1850661, -23392159, -6796193, 811545073, -1688514383, -25224774367, 123764707231, 650087614573, -6385330335427, -9591188592399, 279171512779759, -318526766092183, -10665705513959287, 40625771132796817
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, 2], {n, 0, 30}] (* Vaclav Kotesovec, Jan 04 2024 *)
    a[0] := 1; a[n_] := (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum[(-1/2)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1], {k , 1, n}]; Table[a[n], {n, 0, 25}] (* Detlef Meya, May 29 2024 *)
  • Python
    def A368709(n):
        if n == 0: return 1
        return sum((-2)**k * v for k, v in enumerate(A359363Row(n))) // (-2)
    print([A368709(n) for n in range(26)]) # Peter Luschny, Jan 04 2024
  • SageMath
    def A368709(n): return PolyA359363(n, -2) // (-2) if n > 0 else 1
    print([A368709(n) for n in range(0, 26)])  # Peter Luschny, Jan 04 2024
    

Formula

a(n) = (-1/2)*B(n, -2) where B(n, x) are the Baxter polynomials with coefficients A359363, for n > 0. - Peter Luschny, Jan 04 2024
a(0) = 1, a(n) = (-1)^n*2^(n + 1)/(n*(n + 1)^2)*Sum_{k=1..n} (-1/2)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1). - Detlef Meya, May 29 2024

A214358 Number of (2-14-3, 3-41-2)-avoiding permutations of size n.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 374, 1668, 7744, 37182, 183666, 929480, 4803018, 25274088, 135132886, 732779504, 4023875702, 22346542912, 125368768090, 709852110576, 4053103780006, 23320440656376, 135126739754922, 788061492048436, 4623591001082002, 27277772831911348
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of permutations obtained by retaining only the even entries in a complete Baxter permutation of length 2n+1.

Examples

			For n=4, the two permutations not in this class are 2143 and 3412.
		

References

  • W. M. Boyce, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2 (1967), 19-26.

Crossrefs

Cf. A001181.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<6, [1, 1, 2, 6, 22, 88][n+1], ((8*n^3+240-8*n-48*n^2)*a(n-6)+
          (80*n-576-32*n^3+144*n^2)*a(n-5)+ (462+41*n^3-158*n^2-129*n)*a(n-4)+
          (-11*n^3-138+104*n^2+85*n)*a(n-3)+ (-14*n^3-80*n^2-92*n-30)*a(n-2)+
          (9*n^3+46*n^2+81*n+48)*a(n-1)) / ((n+4)*(n+3)*(n+1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 13 2012
  • Mathematica
    a[n_] := a[n] = If[n<6, {1, 1, 2, 6, 22, 88}[[n+1]], ((8*n^3 + 240 - 8*n - 48*n^2)* a[n-6] + (80*n - 576 - 32*n^3 + 144*n^2)*a[n-5] + (462 + 41*n^3 - 158*n^2 - 129*n) *a[n-4] + (-11*n^3 - 138 + 104*n^2 + 85*n)*a[n-3] + (-14*n^3 - 80*n^2 - 92*n - 30 )*a[n-2] + (9*n^3 + 46*n^2 + 81*n + 48)*a[n-1]) / ((n+4)*(n+3)*(n+1))]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)

Formula

The coefficients are P-recursive:
a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 6, a(4) = 22, a(5) = 88 and
(-192-280*k-96*k^2-8*k^3)*a(k) +(1824+32*k^3+432*k^2+1648*k)*a(k+1)+ (-2856-41*k^3-580*k^2-2403*k)*a(k+2) +(-1740+11*k^3+94*k^2-145*k)*a(k+3)+ (6486+14*k^3+332*k^2+2564*k)*a(k+4) +(-4134-9*k^3-208*k^2-1605*k)*a(k+5)+(630+k^3+26*k^2+223*k)*a(k+6) = 0.
Equivalently, the GF is D-finite with recurrence:
12*(t-1)*(2*t-1)^3 +(104*t-338*t^2+512*t^3 -294*t^4-110*t^5 +192*t^6-48*t^7-12) * A(t) -2*t*(t-1)*(40*t^6-128*t^5+89*t^4+53*t^3-88*t^2+35*t-4) * (d/dt)A(t) -t^2*(2*t-1)*(8*t^2-8*t+1) * (t^2-t-1)*(t-1)^2 * (d^2/dt^2)A(t) = 0.
a(n) ~ 512*(3*sqrt(2)-4) * (4+2*sqrt(2))^n/(Pi*sqrt(3)*n^4). - Vaclav Kotesovec, Aug 15 2013
Previous Showing 21-30 of 44 results. Next