cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A119677 a(n) is the number of complete squares that fit inside the circle with radius n, drawn on squared paper at (0, 0).

Original entry on oeis.org

0, 0, 4, 16, 32, 60, 88, 120, 164, 216, 276, 332, 392, 476, 556, 648, 732, 832, 936, 1052, 1176, 1288, 1428, 1560, 1696, 1860, 2016, 2180, 2340, 2512, 2700, 2876, 3080, 3276, 3488, 3712, 3908, 4144, 4360, 4620, 4864, 5096, 5356, 5616, 5900
Offset: 0

Views

Author

Tomas Kyselica (Tomas.Kyselica(AT)gmail.com), Jul 29 2006

Keywords

Crossrefs

Cf. A001182.

Programs

  • Mathematica
    a[n_] := 4 Sum[Floor[Sqrt[n^2 - k^2]], {k, n - 1}];
    Array[a, 45, 0]  (* David Dewan, May 27 2024 *)
  • Python
    from math import isqrt
    def A119677(n): return sum(isqrt(k*((n<<1)-k)) for k in range(1,n))<<2 # Chai Wah Wu, Jul 18 2024

Formula

a(n) = 4 * A001182(n).
Limit_{n->oo} a(n)/(n^2) = Pi.

Extensions

More terms from Don Reble, Aug 01 2006
Name clarified by Kirill Zolotuskiy, Apr 15 2023

A136483 Number of unit square lattice cells inside quadrant of origin-centered circle of diameter n.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 8, 13, 15, 19, 22, 28, 30, 37, 41, 48, 54, 64, 69, 77, 83, 94, 98, 110, 119, 131, 139, 152, 162, 172, 183, 199, 208, 226, 234, 253, 263, 281, 294, 308, 322, 343, 357, 377, 390, 412, 424, 447, 465, 488, 504, 528, 545, 567, 585, 612, 628, 654
Offset: 1

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Examples

			a(5) = 3 because a circle of radius 5/2 in the first quadrant encloses (2,1), (1,1), (1,2).
		

Crossrefs

Alternating merge of A136484 and A001182.

Programs

  • Magma
    A136483:= func< n | n eq 1 select 0 else (&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
    [A136483(n): n in [1..100]]; // G. C. Greubel, Jul 28 2023
    
  • Mathematica
    Table[Sum[Floor[Sqrt[(n/2)^2 -k^2]], {k,Floor[n/2]}], {n,100}]
  • PARI
    a(n) = sum(k=1, n\2, sqrtint((n/2)^2 - k^2)); \\ Michel Marcus, Jul 28 2023
  • SageMath
    def A136483(n): return sum(isqrt((n/2)^2-j^2) for j in range(1,(n//2)+1))
    [A136483(n) for n in range(1,101)] # G. C. Greubel, Jul 28 2023
    

Formula

a(n) = Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
Lim_{n -> oo} a(n)/(n^2) -> Pi/16 (A019683).
a(n) = (1/4) * A136485(n) = (1/2) * A136513(n).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (4 * (1 - x)). - Ilya Gutkovskiy, Nov 23 2021

A228232 Number of strict Gaussian primes of norm less than or equal to n in the first quadrant.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 13, 17, 19, 23, 29, 31, 35, 41, 43, 49, 57, 63, 69, 75, 83, 89, 93, 99, 109, 117, 123, 133, 141, 149, 157, 167, 175, 187, 197, 207, 215, 225, 233, 239, 253, 267, 273, 287, 297, 309, 319, 335, 351, 361, 369, 385, 403, 415, 425, 439, 453, 465, 481, 495
Offset: 1

Views

Author

Olivier Gérard, Aug 17 2013

Keywords

Comments

A Gaussian integer is counted if it has a positive real part and a positive imaginary part (first quadrant excluding the axes).

Crossrefs

Cf. A001182 (number of strict Gaussian integers in the first quadrant).
Cf. A062711 (counts the Gaussian primes on axes also).
Cf. A228233 (version of this sequence including the axes).

Programs

  • Mathematica
    nn = 60; t = Select[Flatten[Table[a + b*I, {a, nn}, {b, nn}]], PrimeQ[#, GaussianIntegers -> True] &]; Table[Length[Select[t, Abs[#] <= n &]], {n, nn}] (* T. D. Noe, Aug 19 2013 *)

A136514 Number of unit square lattice cells inside half-plane (two adjacent quadrants) of origin centered circle of radius n.

Original entry on oeis.org

0, 2, 8, 16, 30, 44, 60, 82, 108, 138, 166, 196, 238, 278, 324, 366, 416, 468, 526, 588, 644, 714, 780, 848, 930, 1008, 1090, 1170, 1256, 1350, 1438, 1540, 1638, 1744, 1856, 1954, 2072, 2180, 2310, 2432, 2548, 2678, 2808, 2950, 3090, 3220, 3366, 3510, 3664
Offset: 1

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Examples

			a(2) = 2 because a circle centered at the origin and of radius 2 encloses (-1,1) and (1,1) in the upper half plane.
		

Crossrefs

Programs

  • Magma
    A136514:= func< n | n eq 1 select 0 else 2*(&+[Floor(Sqrt(n^2-j^2)): j in [1..n-1]]) >;
    [A136514(n): n in [1..100]]; // G. C. Greubel, Jul 27 2023
    
  • Mathematica
    Table[2*Sum[Floor[Sqrt[n^2 -k^2]], {k,n-1}], {n,100}]
  • PARI
    a(n) = 2*sum(k=1, n-1, sqrtint(n^2-k^2)); \\ Michel Marcus, Jul 27 2023
  • SageMath
    def A136514(n): return 2*sum(isqrt(n^2-k^2) for k in range(1,n))
    [A136514(n) for n in range(1,101)] # G. C. Greubel, Jul 27 2023
    

Formula

Lim_{n -> oo} a(n)/(n^2) -> Pi/8.
a(n) = 2 * Sum_{k=1..n-1} floor(sqrt(n^2 - k^2)).
a(n) = A136513(2*n).
a(n) = 2*A001182(n). - R. J. Mathar, Jan 10 2008

A281795 Number of unit squares (partially) covered by a disk of radius n centered at the origin.

Original entry on oeis.org

0, 4, 16, 36, 60, 88, 132, 172, 224, 284, 344, 416, 484, 568, 664, 756, 856, 956, 1076, 1200, 1324, 1452, 1600, 1740, 1884, 2040, 2212, 2392, 2560, 2732, 2928, 3120, 3332, 3536, 3748, 3980, 4192, 4428, 4660, 4920, 5172, 5412, 5688, 5956, 6248, 6528, 6804, 7104, 7400, 7716
Offset: 0

Views

Author

Orson R. L. Peters, Jan 30 2017

Keywords

Comments

Touching a unit square does not count as covering. E.g., the disk with radius 5 does not cover the unit square with (3, 4) as bottom-left corner.

Examples

			a(4) = 4 * 15 = 60 because in the positive quadrant 15 unit squares are covered and the problem is symmetrical. In the bounding box of the circle only the unit squares in the corners are not (partially) covered, so a(4) = 8*8 - 4 = 60.
		

Crossrefs

Programs

  • Maple
    N:= 100:  # for a(0)..a(N)
    V:=Array(0..N):
    for i from 0 to N do
      for j from 0 to i do
        r:= sqrt(i^2 + j^2);
        if r::integer then r:= r+1 else r:= ceil(r) fi;
        if r > N then break fi;
        if i=j then m:= 4 else m:= 8 fi;
        V[r..N]:= V[r..N] +~ m;
    od od:
    convert(V,list); # Robert Israel, Feb 21 2025
  • Mathematica
    A281795[n_] := 4*Sum[Ceiling[Sqrt[n^2 - k^2]], {k, 0, n-1}];
    Array[A281795, 100, 0] (* Paolo Xausa, Feb 21 2025 *)
  • Octave
    a = @(n) 4*sum(ceil(sqrt(n.^2-(0:n-1).^2))); % Luis Mendo, Aug 09 2021
  • Python
    a = lambda n: sum(4 for x in range(n) for y in range(n)
                        if x*x + y*y < n*n)
    

Formula

a(n) = 4*A001182(n) + A242118(n). - Andrey Zabolotskiy, Jan 30 2017
a(n) = Sum_{k=0..n-1} 4*ceiling(sqrt(n^2-k^2)). - Luis Mendo, Aug 09 2021

A349609 Number of solutions to x^2 + y^2 <= n^2, where x, y are positive odd integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 8, 13, 15, 20, 22, 28, 31, 39, 43, 52, 54, 64, 69, 79, 83, 96, 102, 112, 121, 135, 140, 154, 162, 179, 185, 203, 212, 228, 238, 255, 265, 281, 296, 316, 326, 349, 359, 382, 394, 416, 429, 451, 469, 494, 508, 532, 547, 573, 587
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2021

Keywords

Examples

			a(4) = 3 since there are solutions (1,1), (3,1), (1,3).
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[2, 0, x^4]^2/(4 (1 - x)), {x, 0, n^2}], {n, 0, 55}]

Formula

a(n) = [x^(n^2)] theta_2(x^4)^2 / (4 * (1 - x)).
a(n) = Sum_{k=0..n^2} A290081(k).
a(n) = A053415(n) / 4.

A372847 Number of unit squares enclosed by a circle of radius n with an even number of rows and the maximum number of squares in each row.

Original entry on oeis.org

0, 6, 18, 36, 64, 92, 130, 172, 224, 284, 344, 410, 488, 570, 658, 750, 852, 956, 1072, 1194, 1312, 1450, 1584, 1728, 1882, 2044, 2204, 2372, 2548, 2730, 2916, 3112, 3312, 3520, 3738, 3950, 4184, 4408, 4656, 4900, 5146, 5402, 5670, 5942, 6222, 6492, 6784, 7080, 7382, 7700
Offset: 1

Views

Author

David Dewan, May 14 2024

Keywords

Comments

Always has an even number of rows (2*n-2) and each row may have an odd or even number of squares.
Symmetrical about the horizontal and vertical axes.

Examples

			For n=4
row 1:   5 squares
row 2:   6 squares
row 3:   7 squares
row 4:   7 squares
row 5:   6 squares
row 6:   5 squares
Total = 36
		

Crossrefs

Cf. A136485 (by diameter), A001182 (within quadrant), A136483 (quadrant by diameter), A119677 (even number of rows with even number of squares in each), A125228 (odd number of rows with maximal squares per row), A341198 (points rather than squares).

Programs

  • Mathematica
    a[n_]:=2 Sum[Floor[2 Sqrt[n^2 - k^2]], {k,n-1}]; Array[a,50]

Formula

a(n) = 2*Sum_{k=1..n-1} floor(2*sqrt(n^2 - k^2)).

A120883 (1/4)*number of lattice points with odd indices in a square lattice inside a circle around the origin with radius 2*n.

Original entry on oeis.org

0, 1, 3, 8, 13, 20, 28, 39, 52, 64, 79, 96, 112, 135, 154, 179, 203, 228, 255, 281, 316, 349, 382, 416, 451, 494, 532, 573, 618, 661, 707, 756, 807, 859, 910, 963, 1015, 1076, 1137, 1198, 1256, 1321, 1386, 1452, 1523, 1594, 1667, 1737, 1808, 1889, 1965, 2046, 2123
Offset: 0

Views

Author

Hugo Pfoertner, Jul 12 2006

Keywords

Comments

Lim_{n->infinity} a(n)/n^2 = Pi/4.
a(n) gives the number of positive half-points (for example, 1/2 and 3/2) inside or on the circle of radius n. - Jon Perry, Nov 04 2012

Examples

			a(3)=8 because the 8 lattice points in the first quadrant (x,y) = {(1,1), (1,3), (3,1), (1,5), (5,1), (3,3), (3,5), (5,3)} all satisfy x^2 + y^2 < (2*3)^2.
a(3)=8 because (1/2,1/2), (1/2,3/2), (1/2,5/2), (3/2,1/2), (3/2,3/2), (3/2,5/2), (5/2,1/2) and (5/2,3/2) all satisfy x^2 + y^2 <= n^2. - _Jon Perry_, Nov 04 2012
		

Crossrefs

Cf. A001182.

Formula

a(n) = Sum_{i=1..n} ceiling(sqrt(n^2 - (i - 1/2)^2) - 1/2). Proof outline: consider an integer grid (i,j), e.g., a pixel image. A positive half circle hull's boundary of radius n contains all points ('pixels') where (i - 1/2)^2 + (j - 1/2)^2 = n^2 => j = f(j) = sqrt(n^2 - (i - 1/2)^2) + 1/2. To obtain the number of elements of the hull's closure without nonpositive points, count by upper Riemann sums with interval length 1: (n) = A(n) = Sum_{i=1..n} (ceiling(f(i)) - 1). ('i=1' discards the (0,j) points and '-1' cancels the (i,0) points.) - Johannes Hoentsch, Feb 26 2019

Extensions

a(0) added by Jon Perry, Nov 04 2012

A097689 Number of prime pairs (p,q) with p^2 + q^2 <= n^2.

Original entry on oeis.org

0, 0, 1, 3, 4, 8, 8, 13, 15, 16, 16, 20, 22, 30, 32, 33, 33, 41, 44, 50, 54, 58, 58, 66, 69, 73, 76, 76, 78, 88, 88, 100, 103, 107, 109, 111, 113, 123, 127, 129, 131, 142, 146, 159, 165, 167, 169, 183, 191, 193, 197, 201, 204, 214, 218, 224, 230, 233, 233, 245, 252, 268
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{cnt = 0, p, q}, Do[p = Prime[ip]; q = Prime[iq]; If[p^2 + q^2 <= n^2, If[p == q, cnt++, If[p < q, cnt += 2, 0]]], {ip, PrimePi[n]}, {iq, ip, PrimePi[n]}]; cnt];
    Array[a, 100] (* Jean-François Alcover, Nov 18 2021 *)
Previous Showing 11-19 of 19 results.